39、量子计算算法:QFT与GQDS的探秘

量子计算算法:QFT与GQDS的探秘

在量子计算领域,有两个重要的算法——量子傅里叶变换(QFT)和Grover量子数据库搜索(GQDS)算法,它们各自展现出独特的魅力与潜力。

量子傅里叶变换(QFT)与经典快速傅里叶变换(FFT)的对比

在分析QFT算法是否比经典的快速傅里叶变换(FFT)更快时,我们需要对比两种算法中信号所经过的门的数量。对于一个K输入的QFT电路,它需要经过的门的数量为$K + (K - 1) + (K - 2) + … + 2 + 1 = \sum_{k = 1}^{K} k = \frac{K(K + 1)}{2}$,再加上$K/2$或$(K - 1)/2$(K为偶数或奇数)个用于执行SWAP操作的双门,每个双门相当于三个CNOT门。因此,K输入的QFT电路生成输出的计算时间量级为$O(K^2)$,这意味着该算法属于复杂度类P,因为在顺序机器上可以在多项式时间内实现。

而经典的FFT电路对于相同的计算(数据大小$N = log_2 K$)所需的门的数量为$K log K = 2^N log_2 2^N = N2^N$,其计算时间量级为$O(N2^N)$,这是电路规模的指数级增长,与QFT的二次增长形成鲜明对比。

不过,这种比较存在一定的问题。量子电路操作的是量子态,而非数据位。要测量对应的“经典位”(cbit),还需要额外的处理电路。而且,这种测量本质上是不确定的,无法进行公平的比较。简单来说,QFT比FFT在速度上有指数级的提升,但与经典情况不同,它无法测量信号幅度。此外,目前除了在非常有限的情况($K = 1$或$K = 2$)下,还没有已知的技术来准备QFT电路的输入状态$|n_k\rangle$。因此,量子傅里叶变换可能看起来

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值