量子傅里叶变换(QFT)

很长时间没有回顾QFT算法,等到用的时候,自己推导的时候忘得一干二净,用这篇博客总结一下推导过程。

目录

1.QFT介绍 

1.1 离散傅里叶变换

1.2 量子傅里叶变换

1.3 QFT过程推导

2.QFT电路

3.QFT具体步骤


1.QFT介绍 

1.1 离散傅里叶变换

任务: 实现一个复向量x到另一个复向量y的变换

1.2 量子傅里叶变换

注意:在量子态幅度上执行离散傅里叶变换,是一个态转换为另一个态,而不是制备了一个新的量子态。 

上面图片内容总结:

 

1.3 QFT过程推导

 图中绿色部分代表了进行QFT,量子态的变换形式。下面分析一下QFT的量子线路。

2.QFT电路

j1~jn为0或者1:

 对于j1:经过H门,得到:

 每经过一个受控门的变化: 0.j1 ,   0.j1j2,  0.j1j2j3......0.j1j2...jn
 

对于j1: 一个H门,(n-1)个受控门;

对于j2: 一个H门,(n-2)个受控门;

...  ...

对于jn-1: 一个H门,1个受控门;

对于jn: 一个H门;

 3.QFT具体步骤

 QFT算法,我们可以看出所需要的门的个数为n+(n-1)+...+1,算法复杂度为O(n²),QFT 实现的是“态到态”的离散傅里叶变换,并没有实现加速经典的FT。值编码在量子态的幅度上,如果借助层析读取每一个数值,会失去加速效果。     

 QFT比FT达到指数加速效果,但没有改进经典FT: 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值