自动给神经网络找bug,Google发布TensorFuzz

Google大脑的研究员推出TensorFuzz,一种基于覆盖引导的模糊测试方法,专门针对神经网络的软件测试。该工具能发现数值误差、模型与量化版本的分歧及字符级语言模型的不良行为,有助于神经网络的调试和优化。
摘要由CSDN通过智能技术生成
夏乙 发自 凹非寺
量子位 报道 | 公众号 QbitAI

DEBUG,是程序员永无止境的日常。给神经网络捉虫,更是比普通程序难得多:

绝大部分bug都不会导致神经网络崩溃、报错,只能让它训练了没效果,默默地不收敛。

能不能把炼丹师们从无休止无希望的debug工作中拯救出来?两位谷歌大脑研究员Augustus Odena和Ian Goodfellow说,好像能。

640?wx_fmt=jpeg

他们推出了一种自动为神经网络做软件测试的方法:TensorFuzz。它非常擅长自动发现那些只有少数某些输入会引发的错误。

比如说,它能在已训练的神经网络里发现数值误差,生成神经网络和其量化版本之间的分歧,发现字符级语言模型中的不良行为。

这种方法说新也不新,它来源于传统编程技艺中的一种测试手段:覆盖引导的模糊测试,英语叫coverage-guided fuzzing,简称CGF。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值