【图像处理】基于OpenCV底层实现的滤波

本文探讨了图像处理中的滤波技术,详细介绍了如何使用OpenCV库进行高斯滤波、均值滤波和中值滤波操作,并展示了不同滤波效果对图像的影响。
摘要由CSDN通过智能技术生成

image processing 系列

  1. 【图像处理】直方图匹配
  2. 【图像处理】图片旋转

高斯滤波

高斯滤波器介绍: wikipedia。高斯滤波器的未知数(或者说函数输入)有两个:(1)滤波器核半径;(2)σ(正态分布的标准偏差)。在连续二维空间中,这个函数长这样:

除了函数中心是极大值,周围都是围绕中心对称的。
这样有一个好处,因为滤波器实质上是 卷积(convolution)操作,卷积操作需要将核函数围绕 中心翻转之后,在与对应矩阵中各个数相乘(注意:此时 不是矩阵相乘,只是函数核中每个数字单独的相乘,不涉及整体相乘求和)。而高斯函数的对称的,所以函数核翻不翻转都一样结果。

首先,我们需要根据核半径(代码中slab = 2*r + 1)、σ(sigma)求出高斯核函数矩阵:
// get Gaussian Kernel Function
void ycGaussianKernel(float* kernel, int sigma, int slab)
{
	int index;
	float dx2, dy2;
	float sum = 0;
	for(int i=0; i<slab; i++)
	{
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值