附录A

附录A

标签(空格分隔): Evens PDE


APPENDIX A:NOTATION

A.1. 矩阵(Notation for matrices)

  1. 我们用 A=((aij)) 表示 m×n 阶矩阵 A ,其中aij为第 (i,j)th 个元素。对角矩阵表示为 diag(di,...,dn).
  2. Mm×n 表示实 m×n 阶矩阵空间, Sn 表示 n×n 矩阵空间。
  3. trA= 矩阵 A 的迹(trace)。
  4. detA=矩阵 A 的行列式(determinant)。
  5. AT=矩阵 A 的转置(transpose)。
  6. cofA=矩阵 A 的代数余子式(cofactor)。
  7. A=((aij)) B=((bij)) m×n 矩阵,则有:

    A:B=i=1mj=1naijbij

    |A|=(A:A)12=(i=1mj=1na2ij)12

  8. ASn,x=(x1,...,xn)Rn 则相应的二次方程为 xAx=ni,j=1aijxixj

  9. A,BSn , AB 表示 AB 半正定的。特别地,若 xAxθ|x|2, for all xRn 则记为 AθI
    有时候 yA 表示 ATy , AMm×n yRm


A.2. 几何符号(Geometric notation)

  1. Rn=n 维实欧几里得空间(Euclidean speace), R1=R
  2. ei=(0,...,0,1,...,0)=ith 标准坐标向量。
  3. Rn 中点 x=(x1,...,xn) ,我们根据上下文判断是行向量还是列向量。
  4. Rn+={x=(x1,...,xn)Rn|xn>0}= 开上半空间(open upper half-space),特别 R+={xR|x>0}
  5. Rn+1 中的点经常表示为 (x,t)=(x1,...,xn,t) 将t解释为时间 t=xn+1=time Rn 中点也写作 x=(x,xn) 其中 x=(x1,...,xn1)Rn1
  6. U,V,W 经常表示 Rn 的开子集, VU 表示 VV¯¯¯U ,其中 V¯¯¯ 为紧致的(compact),说 V 紧致地包含于U
  7. U=U 的边界, U¯¯¯=UU 表示 U 的闭包(closure)。
  8. UT=U×(0,T]
  9. ΓT=U¯TUT=UT 的抛物线边界(parabolic boundary)
  10. B(x,r)={yRn||xy|r},Rn x 为心,r>0为半径的闭球。开球为 B0(x,r)
  11. C(x,t;r)={yRn,sR||xy|r,tr2st}= 闭圆柱(cylinder),底为以 (x,t) 为心 r>0 为半径的圆,高为 r2
  12. α(n)=Rn 中单位球 B(0,1) 的体积 =πn/2Γ(n2+1) , nα(n)=Rn 中单位球面 B(0,1) 的表面积。
  13. a=(a1,...,an),b=(b1,...,bn)Rn
    ab=i=1naibi,|a|=(i=1na2i)12
  14. Cn=n 维复空间, C 为复平面。若 zC ,则 Re(z) 表示 z 的实部Im(z)表示 z 的虚部。

A.3. 函数的记号(Notation for functions)

  1. u:UR,记作
    u(x)=u(x1,...,xn),(xU)
    u 为无限可微时,称u为光滑的。
  2. u,v 为两个函数, uv 表示 u v完全相等,也就是对于任意参数他们的值相等。 u:=v 定义等于 v u.函数 u 的支集(support)记为spt u
  3. u+=max(u,0),u=min(u,0) 则, u=u+u,|u|=u++u 。符号函数:
    sgn(x)=101if x>0 if x=0 if x>0 .
  4. u:URm 则记为
    u(x)=(u1(x),...,um(x))      xU
    ,函数 uk 是的 u k 个分量。
  5. Σ Rn 中光滑的 (n1) 维曲面( surface ),则
    ΣfdS
    表示 Σ f (n1)维曲面积分。若 C Rn中曲线(curve),
    Cfdl
    表示 f C上的关于弧长(arclength)的积分。
  6. 平均值:
    B(x,r)fdy:=1α(n)rnB(x,r)fdS=
    f 在球B(x,r)上的平均值。
    B(x,r)fdS:=1nα(n)rn1B(x,r)fdS=
    f 在球面B(x,r)上的平均值。一般地,
    Efdμ:=1μ(E)Efdμ=
    f 在集E上的平均值。
  7. χE(x)={10if xEif xE,χE(x) E 的指标函数(示性函数indicator function)。
  8. 函数u:UR称为利普希茨连续的(Lipschitz continuous),若:
    |u(x)u(y)|C|xy|
    对于常数 C 和任意的x,yU成立,记
    Lip[u]:=supx,yUxy|u(x)u(y)||xy|
  9. 函数 f,g 的卷积(convolution)记为: fg .

导数的记号(Notation for derivatives)

假设 u:URxU .

  1. uxi=limh0u(x+hei)u(x)h provided this limit exists.
  2. uxi 记为 uxi .
  3. 类似地 2uxiyj=uxiyj , 3uxiyjzk=uxiyjzk ,ect.
  4. Multiindex Notation
    (1). 向量 α=(α1,...,αn) 其中 αi 是非负整数称为有序多重指标(multiindex of order):
    |α|=α1++αn.

    (2). 给定一个多重指标 α ,定义:
    Dαu(x):=|α|u(x)xα11xαnn=α1x1αnxnu.

    (3). 若 k 为一个非负整数,则
    Dku(x)={Dαu(x)||α|=k},
    所有 k 阶偏微分的集合。设定某种规则,我们将Dku(x)看做 Rnk 中的点。
    (4). |Dku|=(|α|=k|Dαu|2)12
    (5). 特例:若 k=1 , Du 中元素可以组成如下梯度向量(gradient vector):
    Du:=(ux1,,uxn)=gradient vector.
    从而 DuRn u 的径向导数(radial derivative):
    ur:=x|x|Du

    k= D2u 中元素可 组成如下Hessian矩阵
    D2u:=ux1x1uxnx1ux1xnuxnxnn×n=Hessianmatrix.
    因此 D2uSn n×n 阶实对称(symmetric)矩阵空间.
  5. Δu=ni=1uxixi=tr(D2u)=Laplacian of u.
  6. u=u(x,y)(xRn,yRm) then, Dxu=(ux1,,uxn),Dyu=(uy1,,uym)

函数空间(Function spaces)
1. C(U)={u:UR|u continuous}. C(U¯)={uC(U)|u is uniformly continuous on bounded subsets of U}
Ck(U)={u:UR|u is k-times continously differentiable}.
Ck(U¯)={u:UCk(U)|Dαu isuniformly continous on bounded subsets of U,for all |α|k } uCk(U¯) Dα 对于每个多重指标 α,|α|k 连续趋向于 U¯.
2. C(U)={u:UR|u}=k=0Ck(U) 同样地 C(U¯)=k=0Ck(U¯)
3. Cc(U),Ckc(U) 代表拥有紧支集(compact support)的 C(U),Ck(U)
4. Lp(U)={u:UR|u(Lebesgue measurable),uLp(U):=<} 其中 uLp(U):=(U|u|pdx)1p (1p<).
L(U)={u:UR|u(Lebesgue measurable),uL(U):=<} 其中 uL(U):=esssupU|U|
Lploc(U)={u:R|uLp(V),VU}. See also § D.1.
5. DuLp(U)=|Du|Lp(U) , D2uLp(U)=|D2u|Lp(U)
6. Wk,p(U),Hk(U),ect.(k=0,1,2,...,1p) 代表索伯列夫空间(Sobolec spaces)see Chapter 5.
7. Ck,β(U¯)(k=0,...,0<β1) 代表 Ho¨lder 空间.
8. tx 的函数。有时候引入的 x -和t-变量函数空间是有益的,尽管没有标准的记号,我们在书中有

C21(UT)={u:R|u,Dxu,D2xu,utC(UT)}

9. In particular, if uC21(UT) , then u,Dxu , etc. are continuous up to
the top U×t=T .


A.4. 向量值函数(Vector-vlued functions)

  1. m>1,u:URm,u=(u1,...,um), 对于多重指标 α 我们定义 Dαu=(Dαu1,...,Dαum). 从而,
    Dku={Dαu||α|=k}
    and
    |Dku|:=|α|=k|Dαu|212
  2. k=1 ,
    Du:=u1x1umx1u1xnumxnm×n=gradient matrix.
  3. m=n , divu:=tr(Du)=i=1nuixi=divergence()of u
  4. 空间 C(U;Rm),Lp(U;Rm),ect. 包含如下函数: u:URm,u=(u1,...,um),with uiC(U),Lp(U),ect.(i=1,...,m)
    5.关于上标和下标的说明:我们用粗体(boldface)表示在 Rm,m>1(or else Banach or Hilbert spaces) 上取值的函数,这种映射中函数的分量使用上标(superscripts)表示,而点 xR 的分量则用下标(subscripts)表示。对于矩阵值映射上下标根据上下文确定。

A.5. 估量的记号(Notation for estimates.)

C 表示常量。
Definitions.
(Big-oh notation.)f=O(g)  as xx0表示,存在常数 C 使得|f(x)C|g(x)||对所有 x 充分接近x0.
(Little-oh notation.) f=o(g)  as xx0 表示, limxx0f(x)g(x)=0.


A.6.一些注释(Some comments about notation.)

  1. 我们使用符号” Du ”而不是” u ”来表示函数 u 的梯度,因为”D^2u”很自然地表示u的Hessian矩阵,而” 2u ”会和Laplacian混淆。
  2. 大多偏微分方程方面的数书籍和文章用“ Ω ”表示 Rn 的使得所给PDE成立的开子集。
    我们使用符号 U 来表示上述区域,因为我们可以使用字母V,W代表 U 子区域。
  3. Ω是概率空间中的一个标准符号。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值