附录A
标签(空格分隔): Evens PDE
APPENDIX A:NOTATION
A.1. 矩阵(Notation for matrices)
- 我们用
A=((aij))
表示
m×n
阶矩阵
A
,其中
aij 为第 (i,j)th 个元素。对角矩阵表示为 diag(di,...,dn). - Mm×n 表示实 m×n 阶矩阵空间, Sn 表示 n×n 矩阵空间。
- trA= 矩阵 A 的迹(trace)。
detA= 矩阵 A 的行列式(determinant)。AT= 矩阵 A 的转置(transpose)。cofA= 矩阵 A 的代数余子式(cofactor)。若
A=((aij)) 和 B=((bij)) 为 m×n 矩阵,则有:A:B=∑i=1m∑j=1naijbij
|A|=(A:A)12=(∑i=1m∑j=1na2ij)12若 A∈Sn,x=(x1,...,xn)∈Rn 则相应的二次方程为 x⋅Ax=∑ni,j=1aijxixj 。
若 A,B∈Sn , A≥B 表示 A−B 半正定的。特别地,若 x⋅Ax≥θ|x|2, for all x∈Rn 则记为 A≥θI
有时候 yA 表示 ATy , A∈Mm×n 和 y∈Rm
A.2. 几何符号(Geometric notation)
- Rn=n− 维实欧几里得空间(Euclidean speace), R1=R
- ei=(0,...,0,1,...,0)=ith 标准坐标向量。
- Rn 中点 x=(x1,...,xn) ,我们根据上下文判断是行向量还是列向量。
- Rn+={x=(x1,...,xn)∈Rn|xn>0}= 开上半空间(open upper half-space),特别 R+={x∈R|x>0}
- Rn+1 中的点经常表示为 (x,t)=(x1,...,xn,t) 将t解释为时间 t=xn+1=time , Rn 中点也写作 x=(x′,xn) 其中 x′=(x1,...,xn−1)∈Rn−1
-
U,V,W
经常表示
Rn
的开子集,
V⊂⊂U
表示
V⊂V¯¯¯⊂U
,其中
V¯¯¯
为紧致的(compact),说
V
紧致地包含于
U - ∂U=U 的边界, U¯¯¯=U∪∂U 表示 U 的闭包(closure)。
UT=U×(0,T] - ΓT=U¯T−UT=UT 的抛物线边界(parabolic boundary)
-
B(x,r)={y∈Rn||x−y|≤r},Rn
中
x
为心,
r>0 为半径的闭球。开球为 B0(x,r) - C(x,t;r)={y∈Rn,s∈R||x−y|≤r,t−r2≤s≤t}= 闭圆柱(cylinder),底为以 (x,t) 为心 r>0 为半径的圆,高为 r2
- α(n)=Rn 中单位球 B(0,1) 的体积 =πn/2Γ(n2+1) , nα(n)=Rn 中单位球面 ∂B(0,1) 的表面积。
- 若
a=(a1,...,an),b=(b1,...,bn)∈Rn
a⋅b=∑i=1naibi,|a|=(∑i=1na2i)12
-
Cn=n−
维复空间,
C
为复平面。若
z∈C
,则
Re(z)
表示
z
的实部
Im(z) 表示 z 的虚部。
A.3. 函数的记号(Notation for functions)
- 若
u:U→R ,记作u(x)=u(x1,...,xn),(x∈U)当 u 为无限可微时,称u 为光滑的。 - 若
u,v
为两个函数,
u≡v
表示
u
和
v 完全相等,也就是对于任意参数他们的值相等。 u:=v 定义等于 v 的u .函数 u 的支集(support)记为spt u 。 -
u+=max(u,0),u−=−min(u,0)
则,
u=u+−u−,|u|=u++u−
。符号函数:
sgn(x)=⎧⎩⎨10−1if x>0 if x=0 if x>0 .
- 若
u:U→Rm
则记为
u(x)=(u1(x),...,um(x)) x∈U,函数 uk 是的 u 第 k 个分量。
- 若
Σ 是 Rn 中光滑的 (n−1)− 维曲面( surface ),则∫ΣfdS表示 Σ 上 f 的(n−1)− 维曲面积分。若 C 为Rn 中曲线(curve),∫Cfdl表示 f 在C 上的关于弧长(arclength)的积分。 - 平均值:
∫∗B(x,r)fdy:=1α(n)rn∫∂B(x,r)fdS=f 在球
B(x,r) 上的平均值。∫∗B(x,r)fdS:=1nα(n)rn−1∫∂B(x,r)fdS=f 在球面∂B(x,r) 上的平均值。一般地,∫∗Efdμ:=1μ(E)∫∂Efdμ=f 在集E 上的平均值。 - χE(x)={10if x∈Eif x∉E,χE(x) 是 E 的指标函数(示性函数indicator function)。
- 函数
u:U→R 称为利普希茨连续的(Lipschitz continuous),若:|u(x)−u(y)|≤C|x−y|对于常数 C 和任意的x,y∈U 成立,记
Lip[u]:=supx,y∈Ux≠y|u(x)−u(y)||x−y| - 函数
f,g
的卷积(convolution)记为:
f∗g
.
导数的记号(Notation for derivatives)
假设 u:U→R,x∈U .
- ∂u∂xi=limh→0u(x+hei)−u(x)h provided this limit exists.
- 将 ∂u∂xi 记为 uxi .
- 类似地 ∂2u∂xi∂yj=uxiyj , ∂3u∂xi∂yj∂zk=uxiyjzk ,ect.
- Multiindex Notation
(1). 向量 α=(α1,...,αn) 其中 αi 是非负整数称为有序多重指标(multiindex of order):|α|=α1+⋯+αn.
(2). 给定一个多重指标 α ,定义:
Dαu(x):=∂|α|u(x)∂xα11⋯∂xαnn=∂α1x1⋯∂αnxnu.
(3). 若 k 为一个非负整数,则所有 k 阶偏微分的集合。设定某种规则,我们将Dku(x)={Dαu(x)||α|=k}, Dku(x) 看做 Rnk 中的点。
(4). |Dku|:=(∑|α|=k|Dαu|2)12
(5). 特例:若 k=1 , Du 中元素可以组成如下梯度向量(gradient vector):Du:=(ux1,⋯,uxn)=gradient vector.从而 Du∈Rn , u 的径向导数(radial derivative):ur:=x|x|⋅Du
若 k= 则 D2u 中元素可 组成如下Hessian矩阵D2u:=⎛⎝⎜⎜ux1x1uxnx1⋯⋱⋯ux1xnuxnxn⎞⎠⎟⎟n×n=Hessianmatrix.因此 D2u∈Sn n×n 阶实对称(symmetric)矩阵空间. - Δu=∑ni=1uxixi=tr(D2u)=Laplacian of u.
- u=u(x,y)(x∈Rn,y∈Rm) then, Dxu=(ux1,⋯,uxn),Dyu=(uy1,⋯,uym)
函数空间(Function spaces)
1.
C(U)={u:U→R|u continuous}.
C(U¯)={u∈C(U)|u is uniformly continuous on bounded subsets of U}
Ck(U)={u:U→R|u is k-times continously differentiable}.
Ck(U¯)={u:U∈Ck(U)|Dαu isuniformly continous on bounded subsets of U,for all |α|≤k }
若
u∈Ck(U¯)
,
Dα
对于每个多重指标
α,|α|≤k
连续趋向于
U¯.
2.
C∞(U)={u:U→R|u是无限可微的}=∩∞k=0Ck(U)
同样地
C∞(U¯)=∩∞k=0Ck(U¯)
。
3.
Cc(U),Ckc(U)
代表拥有紧支集(compact support)的
C(U),Ck(U)
4.
Lp(U)={u:U→R|u是勒贝格可测(Lebesgue measurable)的,∥u∥Lp(U):=<∞}
其中
∥u∥Lp(U):=(∫U|u|pdx)1p
(1≤p<∞).
L∞(U)={u:U→R|u是勒贝格可测(Lebesgue measurable)的,∥u∥L∞(U):=<∞}
其中
∥u∥L∞(U):=esssupU|U|
Lploc(U)={u:→R|u∈Lp(V),V⊂⊂U}.
See also
§
D.1.
5.
∥Du∥Lp(U)=∥|Du|∥Lp(U)
,
∥D2u∥Lp(U)=∥|D2u|∥Lp(U)
6.
Wk,p(U),Hk(U),ect.(k=0,1,2,...,1≤p≤∞)
代表索伯列夫空间(Sobolec spaces)see Chapter 5.
7.
Ck,β(U¯)(k=0,...,0<β≤1)
代表
Ho¨lder
空间.
8.
t和x
的函数。有时候引入的
x
-和
9. In particular, if u∈C21(UT) , then u,Dxu , etc. are continuous up to
the top U×t=T .
A.4. 向量值函数(Vector-vlued functions)
- 若
m>1,u:U→Rm,u=(u1,...,um),
对于多重指标
α
我们定义
Dαu=(Dαu1,...,Dαum).
从而,
Dku={Dαu||α|=k}and|Dku|:=⎛⎝∑|α|=k|Dαu|2⎞⎠12
-
k=1
,
Du:=⎛⎝⎜⎜u1x1⋮umx1⋯⋱⋯u1xn⋮umxn⎞⎠⎟⎟m×n=gradient matrix.
- 当 m=n , divu:=tr(Du)=∑i=1nuixi=divergence(散度)of u
- 空间
C(U;Rm),Lp(U;Rm),ect.
包含如下函数:
u:U→Rm,u=(u1,...,um),with ui∈C(U),Lp(U),ect.(i=1,...,m)
5.关于上标和下标的说明:我们用粗体(boldface)表示在 Rm,m>1(or else Banach or Hilbert spaces) 上取值的函数,这种映射中函数的分量使用上标(superscripts)表示,而点 x∈R 的分量则用下标(subscripts)表示。对于矩阵值映射上下标根据上下文确定。
A.5. 估量的记号(Notation for estimates.)
C
表示常量。
Definitions.
(Big-oh notation.)
(Little-oh notation.)
f=o(g) as x→x0
表示,
limx→x0f(x)g(x)=0.
A.6.一些注释(Some comments about notation.)
- 我们使用符号”
Du
”而不是”
∇u
”来表示函数
u
的梯度,因为”D^2u”很自然地表示
u 的Hessian矩阵,而” ∇2u ”会和Laplacian混淆。 - 大多偏微分方程方面的数书籍和文章用“
Ω
”表示
Rn
的使得所给PDE成立的开子集。
我们使用符号 U 来表示上述区域,因为我们可以使用字母V,W 代表 U 子区域。 Ω 是概率空间中的一个标准符号。