SOBOLEV梯度

SOBOLEV GRADIENT

翻译自 Application of Sobolev Gradient Method to Solve Klein Gordon Equation

实值 C 1 C^1 C1函数 F F F R n \reals^n Rn上的梯度 ∇ F \nabla F F,其中 n n n为正整数,由下式给出:
lim ⁡ t → 0 1 t ( F ( x + t h ) − F ( x ) ) = F ′ ( x ) h = < h , ∇ F ( x ) > R n x , h ∈ R n . (1) \lim_{t \rightarrow 0} \frac{1}{t} \left( F \left( x + t h \right) - F \left( x \right) \right) = F'(x) h = \left< h, \nabla F(x) \right>_{\reals^n} \quad x, h \in \reals^n. \tag{1} t0limt1(F(x+th)F(x))=F(x)h=h,F(x)Rnx,hRn.(1)
< ⋅ , ⋅ > S \left< \cdot, \cdot \right>_{S} ,S R n \reals^n Rn上一个不同于标准内积 < ⋅ , ⋅ > R n \left< \cdot, \cdot \right>_{\reals^n} ,Rn的内积。那么,存在一个函数 ∇ S F : R n → R n \nabla_S F: \reals^n \rightarrow \reals^n SF:RnRn,使得
F ′ ( x ) h = < h , ∇ S F ( x ) > S x , h ∈ R n . (2) F'(x)h = \left< h, \nabla_S F(x) \right>_S \quad x, h \in \reals^n. \tag{2} F(x)h=h,SF(x)Sx,hRn.(2)
线性函数 F ′ ( x ) F'(x) F(x)可以用 R n \reals^n Rn上的任意内积表示。那么 ∇ S F ( x ) \nabla_S F(x) SF(x)就是函数 F F F在内积为 < ⋅ , ⋅ > S \left< \cdot, \cdot \right>_{S} ,S下的梯度。考虑线性变换 A : R n → R n A : \reals^n \rightarrow \reals^n A:RnRn,那么两个内积的关系为:
< x , y > S = < x , A y > R n x , y ∈ R n . (3) \left< x, y \right>_{S} = \left< x, Ay \right>_{\reals^n} \quad x, y \in \reals^n. \tag{3} x,yS=x,AyRnx,yRn.(3)
则两个梯度的关系为:
( ∇ S F ) ( x ) = A − 1 ∇ F ( x ) , x ∈ R n x ∈ R n . (4) \left( \nabla_S F \right) (x) = A^{-1} \nabla F (x) , x \in \reals^n \quad x \in \reals^n. \tag{4} (SF)(x)=A1F(x),xRnxRn.(4)

对于每个 x ∈ R n x \in \reals^n xRn R n \reals^n Rn中都存在内积 < ⋅ , ⋅ > x \left< \cdot, \cdot \right>_{x} ,x。对于每个 x ∈ R n x \in \reals^n xRn,定义 ∇ x F : R n → R n \nabla_x F : \reals^n \rightarrow \reals^n xF:RnRn为:
F ′ ( x ) h = < h , ∇ x F ( x ) > x for  x , h ∈ R n . (5) F' (x) h = \left< h, \nabla_x F(x) \right>_x \quad \text{for } x, h \in \reals^n. \tag{5} F(x)h=h,xF(x)xfor x,hRn.(5)

F F F的梯度有很多种,这取决于度量的选择,而这些梯度具有非常不同的数值特性。这种定义在有限或无限维Sobolev空间中的函数梯度,称为Sobolev梯度。最速下降可以分为两种类型:离散最速下降和连续最速下降。

∇ S F \nabla_S F SF为实值 C 1 C^1 C1函数 F F F在Hilbert空间 H H H上对为内积 < ⋅ , ⋅ > S \left< \cdot, \cdot \right>_S ,S的梯度。离散最速下降可以看作是,给定初始点 x 0 x_0 x0,构造一个序列 { x k } \{ x_k \} {xk}
x k = x k − 1 − δ k ( ∇ F ) ( x k − 1 ) , k = 1 , 2 , ⋯   . (6) x_k = x_{k-1} - \delta_k \left( \nabla F \right) ( x_{k-1} ), k = 1, 2, \cdots. \tag{6} xk=xk1δk(F)(xk1),k=1,2,.(6)
其中:
δ k = min ⁡ δ F ( x k − 1 − δ ( ∇ F ) ( x k − 1 ) ) . (7) \delta_k = \min_{\delta} F \left( x_{k-1} - \delta \left( \nabla F \right) ( x_{k-1} ) \right). \tag{7} δk=δminF(xk1δ(F)(xk1)).(7)

连续最速下降是一个构造函数 z : [ 0 , ∞ ) → H z : [ 0, \infty ) \rightarrow H z:[0,)H
d z d t = − ∇ F ( z ( t ) ) , z ( 0 ) = z initial . (8) \frac{\mathrm{d} z}{\mathrm{d} t} = - \nabla F \left( z(t) \right), z(0) = z_{\text{initial}}. \tag{8} dtdz=F(z(t)),z(0)=zinitial.(8)
z ( t ) → z ∞ z(t) \rightarrow z_{\infty} z(t)z F F F上的合适条件下,其中 F ( z ∞ ) F(z_{\infty}) F(z) F F F的最小值。

离散最速下降的极限情况可以看作是连续最速下降,因此,我们可以把(6)看作是近似求解(8)的数值方案。 连续最速下降给出了一个理论起点,证明离散最速下降的收敛性。

考虑式(6),当 u = lim ⁡ k → ∞ x k u = \lim_{k \rightarrow \infty} x_k u=limkxk,满足
F ( u ) = 0  or  ( ∇ S F ) ( u ) = 0. (9) F(u) = 0 \text{ or } (\nabla_S F) (u) = 0. \tag{9} F(u)=0 or (SF)(u)=0.(9)
同样,对于(8), u = lim ⁡ t → ∞ x t u = \lim_{t \rightarrow \infty} x_t u=limtxt亦满足(9)。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值