自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 在Ubuntu上安装CGDB

【代码】在Ubuntu上安装CGDB。

2024-04-10 19:10:04 166

原创 ScopeGuard

对函数print获取其类型,再退化成函数指针,作为。然而依然保存,这是因为没有和。也可以是使用一个函数模拟转发。应该是函数指针,于是可。有两种方法,一是使用。

2023-06-15 22:48:19 191

原创 PPT:Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization in Graph Learning

2022-04-29 20:58:30 264

原创 C++17新特性

C++17新特性小记C++17新特性 - 知乎 (zhihu.com)C++17 - cppreference.com1. 类模板实参推导 (CTAD)为了实例化一个类模板,需要知晓但不需要指定每个模板实参。编译器会从初始化器的类型推导缺失的模板实参。template<typename T, typename U>struct A { T t; U u; A(T _t, U _u) : t(_t), u(_u) {}};int main(int

2022-01-17 22:15:14 2687

原创 C++14新特性小记

C++14新特性小记参考文献:C++14 - cppreference.comC++14新特性的所有知识点全在这儿啦! - 简书 (jianshu.com)1. 变量模板变量模板定义一族变量或静态数据成员。template<typename T>constexpr T pi = static_cast<T>(3.1415926535897932385L);int main(int argc, char** argv) { cout <<

2022-01-15 21:35:51 498

原创 C++11新特性

C++11笔记

2022-01-14 20:51:28 369

原创 PPT: 无约束最优化方法

2021-03-29 22:16:22 182

原创 PPT:Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks

2021-03-29 21:59:10 549 2

原创 PPT:Robust Graph Representation Learning via Neural Sparsification

## 参考文献1.Doersch C . Tutorial on Variational Autoencoders[J]. Arxiv:1606.05908, 2016.2.Weisstein, Eric W."Gumbel Distribution." FromMathWorld--A Wolfram Web Resource.Gumbel Distribution -- ...

2021-03-29 21:48:20 1067 8

原创 PPT: 图神经网络综述

图神经网络综述

2020-11-11 14:49:26 1051 1

原创 Mirror Descent 算法(Matlab实现)

Mirror Descent 算法(Matlab实现)主要参考 Mirror descent: 统一框架下的first order methods普通情况下的Mirror Descent算法function x = MirrorDescent(x, lr, gradient, Lipschitz, BregmanDiv, BreDivFun)% f是可微的,且导数L李普希茨连续% x:优化参数% lr: 学习率% gradient:梯度(或者次梯度)% Lipschitz:李普希茨连

2020-07-10 22:21:59 911

原创 Mirror Descent

Mirror Descent翻译自 Bregman Divergence and Mirror Descent文章目录Mirror Descent1 组合目标函数2 在线学习3 随机优化次梯度下降的收敛速度通常取决于问题的维数。假设求函数fff在CCC上的最小值,那么次梯度下降(subgradient descent)为xk+12=xk−αkgk,gk∈∂f(xk)xk+1=arg min⁡x∈C12∥x−xk+12∥2=arg min⁡x∈C12∥x−(xk−αkgk)∥2.(20)\beg

2020-07-10 22:10:59 1763 1

原创 Bregman Divergence

Bregman Divergence翻译自 Bregman Divergence and Mirror Descent动机将欧几里得距离的平方概括为一类距离,这些距离都具有相似的性质。在机器学习、聚类、指数族等方面有很多应用。定义1(Bregman divergence) 函数ψ:Ω→R\psi : \Omega \rightarrow \realsψ:Ω→R满足:a). 严凸b). 连续可微c). 定义在一个封闭的凸集Ω\OmegaΩ上。那么Bregman散度可以定义为:Div

2020-07-10 22:07:16 1190

原创 SOBOLEV梯度

SOBOLEV GRADIENT翻译自 Application of Sobolev Gradient Method to Solve Klein Gordon Equation实值C1C^1C1函数FFF在Rn\reals^nRn上的梯度∇F\nabla F∇F,其中nnn为正整数,由下式给出:lim⁡t→01t(F(x+th)−F(x))=F′(x)h=<h,∇F(x)>Rnx,h∈Rn.(1)\lim_{t \rightarrow 0} \frac{1}{t} \left( F

2020-07-10 22:04:56 636

原创 图卷积神经网络GCN--自动编码器代表作

Graph Auto-encoder文章目录Graph Auto-encoder1 Structural Deep Network Embedding2 Deep neural networks for learning graph representations3 Variational Graph Auto-Encoders4 MGAE: Marginalized Graph Autoenc...

2020-04-02 22:11:02 4666

原创 图卷积神经网络GCN--注意力网络代表作

Graph Attention Networks1 Graph Attention Networks[Velickovic P, 2017, 1] 提出了图的注意力网络,利用注意力机制聚合信息,相当于空间法的卷积。用h⃗i(l)\vec{h}_{i}^{(l)}hi(l)​表示第lll层的第iii个顶点的特征向量。attention coefficient :eij=a(Wh⃗i(l...

2020-04-02 17:34:23 2921 1

原创 图卷积神经网络GCN---池化层代表作

GNN Pooling文章目录GNN Pooling1 Deep Convolutional Networks on Graph-Structured Data2 Convolutional neural networks on graphs with fast localized spectral filtering3 An End-to-End Deep Learning Architect...

2020-04-02 15:47:34 5214 3

原创 图卷积神经网络GCN---空间卷积层代表作

Spatial-based ConvGNN文章目录Spatial-based ConvGNN1 Convolutional networks on graphs for learning molecular fingerprints2 Column Networks for Collective Classification3 Learning Convolutional Neural Netw...

2020-04-01 22:38:38 885

原创 图卷积神经网络GCN---谱图卷积层代表作

Spectral-based ConvGNN这篇博客侧重列举谱图卷积的主要发展演变,如果要从头理解建议阅读图卷积神经网络(Graph Convolutional Network)之谱卷积。基于图谱方法的卷积是图卷积神经网络的一个重要方法。频谱方法的一个常见缺点是它们需要将整个图形加载到内存中以执行图形卷积,这在处理大图形时效率不高。[8]1 Spectral networks and l...

2020-03-31 21:17:01 1161

原创 图卷积神经网络GCN---递归GCN代表作

Recurrent Graph Neural Networks递归图神经网络(RecGNN)大多是图神经网络的开创性作品。 RecGNN旨在学习具有递归神经体系结构的节点表示。 他们假设图中的节点不断与其邻居交换信息/消息,直到达到稳定的平衡。 RecGNNs在概念上很重要,并启发了后来对卷积图神经网络的研究。 特别地,消息传递的思想被基于空间的卷积图神经网络所继承。[1]1 A New Mo...

2020-03-31 19:25:16 2046 2

原创 论文翻译:A Comprehensive Survey on Graph Neural Networks

论文翻译:图神经网络综合研究arXiv:1901.00596v1文章目录论文翻译:图神经网络综合研究1 引言2 定义3 分类和框架3.1 GNN的分类3.2 框架4 图卷积网络4.1 基于频谱的图卷积网络4.1.1 背景4.1.2 基于频谱的GCN方法4.1.3 总结4.2 基于空间法的图卷积网络4.2.1 基于递归的空间GCN4.2.2 基于组合的空间GCN4.2.3 空间GCN的其他变...

2020-03-30 12:37:44 845 2

原创 论文阅读笔记: Modeling Relational Data with Graph Convolutional Networks

arXiv:1703.06103v4文章目录1.Introduction2.神经关系建模(Neural relational modeling)2.1 关系图卷积网络(Relational graph convolutional networks)2.2 正则化(Regularization)3.实体分类(Entity classification)4.链接预测(Link predictio...

2020-02-29 21:06:35 2613

原创 图卷积神经网络(Graph Convolutional Network)之谱卷积

图卷积神经网络(Graph Convolutional Network)的卷积本文主要参考了:从CNN到GCN的联系与区别——GCN从入门到精(fang)通(qi)Chebyshev多项式作为GCN卷积核拉普拉斯矩阵与拉普拉斯算子的关系其他见参考文献部分。1.拉普拉斯矩阵1.1 简单图的拉普拉斯矩阵给定一个具有nnn个顶点的简单无向图G(V,E)G(V,E)G(V,E),...

2020-02-28 19:27:28 1113 2

转载 论文阅读笔记:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORK

论文笔记:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKSarXiv:1609.02907v4这篇论文笔记主要参考了1.【GCN】论文笔记:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS2. 机器学习论文笔记-Semi-Su...

2020-02-27 17:58:31 371

转载 循环矩阵求特征值的方法

循环矩阵根据https://max.book118.com/html/2016/0519/43353557.shtm整理修订1.循环矩阵的定义定义1 数域P\mathbb{P}P上的n×nn \times nn×n矩阵Cn=circ(c0,c1,⋯ ,cn−1)=(c0c1c2⋯cn−1cn−1cn−1c0c1⋯cn−3cn−2⋮⋮⋮⋱⋮⋮c2c3c4⋯c0c1c1c2c3⋯cn−1c...

2020-02-27 17:56:48 7340 2

原创 矩阵求导笔记

矩阵求导笔记version:1.0author:一个混子符号定义数域:记F\mathbb{F}F为某一数域。标量:记yyy和xxx为标量,相应的dy\mathrm{d}ydy和dx\mathrm{d}xdx也为标量,即x,dx,y,dy∈F1x,\mathrm{d}x, y, \mathrm{d}y \in \mathbb{F}^{1}x,dx,y,dy∈F1。向量:记y⃗\vec{...

2019-12-09 14:40:35 404

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除