深入理解CTPN原理

这篇博客深入探讨了CTPN(Connected Text Proposal Network)的工作原理,指出其在文本检测中的优势,避免了传统方法对大尺寸anchor的依赖。内容包括资源链接、CTPN的预处理步骤、对VOC格式数据的处理以及CTPN检测框的可视化过程,展示了从原始检测框到经过NMS算法优化后的结果。
摘要由CSDN通过智能技术生成

资源

  1. paper 网址:https://arxiv.org/abs/1609.03605
  2. tf code网址:https://github.com/eragonruan/text-detection-ctpn

亮点

之前很多做检测的论文都是先画很多anchor,然后再对这些anchor做回归。这些anchor 的尺寸都是相对比较大的,在文本检测上可能效果不是很好。CTPN是将这些anchor分成了很多宽度固定的小区域,预测完小区域之后,再对区域进行合并,得到最后的box位置。

输入

预处理

一般情况下,我们手里的数据是标准的VOC格式,即一张图片上框了很多的框,而这些框是用(Xmin,Ymin,Xmax,Ymax)来表示的。翻看以下的源代码,你会发现恰好是这四个值,如果已经VOC格式的,直接跳到这里来,如果不是,则需要先生成一个text,每一行记录四个坐标(用逗号分隔开),其中这四个坐标的位置是任意的。

#from the split_label in the prepare training data dir
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值