DH算法原理

DH 是 Diffie-Hellman的首字母缩写,是Whitefield与Martin Hellman在1976年提出了一个的密钥交换协议。我个人倾向于称DH算法为 密钥协商协议而RSA算法是密钥交换算法。

本篇分为几个部分,第一个部分介绍一下密钥交换的场景;第二部分介绍一下DH算法的的步骤,以及由该算法引出的一些问题;第三部分开始讲数学原理。数学原理可能涉及到数论、抽象代数,本篇尽量在每个公式后面证明该公式的正确性。

 

简单场景&简单的密钥协商

先从一个应用场景说起:
Alice 和Bob想要在一个不安全的信道共享一个密钥,该密钥可被用来进行后续的其他的操作,并且仅被Alice和Bob所知,第三方无法得知。
一个简单的方法就是,现在全世界都是知道一个值 P=100。Alice生成随机值5,然后乘上P,接着发送Pa = 500给Bob;通样Bob生成随机值6,然后乘上P,接着发送Pb = 600给Alice。
这样,Alice 有 100,5 ,600,Bob有100,6,500。

Alice计算: 随机值5(自己私钥) * 600(对端的公钥) = 3000 等式1
Bob计算 : 随机值6(自己私钥) * 500(对端的公钥) = 3000 等式2

    这样 Alice就和Bob共享了一个值3000,还有谁知道3000这个值呢?我们知道Alice明文的将500发送到不安全信道,Bob明文的将600发送到不安全信道,这也就意味着第三方仅仅知道500 和 600,想要计算获得共享密钥,第三方要么获取到Alice的随机值然后拿它乘上600,要么获取到Bob的随机值然后拿它乘上500,这样才能获取到Alice和Bob的共享密钥。

    问题来了,如何获取到Alice的随机值呢?

    第三方知道,Alice发送的500是由P乘上Alice的随机值得到的,所以问题变成了求方程 x*100 = 500的解。一眼就能看出来,Alice的随机值是5。

上述方法很容易被破解的原因是P太简单了。P值再复杂点怎么样?

例如P = 0x123456781234567812345678
Pa  = 0xAD77D73E0BFC0E3E0BFC0E3D5E84370
Pb  = 0x4EF81E05A6A0F385A6A0F38557A8D58
显然,你不能一眼就求出方程 x*P = Pa 的解

    其实 Alice的随机数为 0x98765432, Bob的随机数为0x45681265。
但是这一切对于计算机来说还是太简单了。例如OpenSSL、Mbedtls等众多的开源库都提供了大数运算的API,计算Pa/P可能就几毫秒甚至几微秒的事情。

    所以怎么要让中间人难以从Pa或者Pb中分解得到Alice或Bob的随机数,而Alice和Bob又能轻松的通过P和随机数计算得到Pa和Pb,就成了设计这个算法的关键。从上面的例子可以看出,简单的乘法运算是不行的。
    一般来说上述所说的全世界都知道的值P称之为公钥,为Alice和Bob的随机数称之为私钥。

 

DH算法的一个例子

这里举例一个DH算法的例子。

例1:

设有这么一个二元组 (q, p) = (3, 7)

我们定义Alice和Bob这么一个运算:

(1)Alice 选择一个范围在[1, p-1]的随机数,为da= 5

(2)Alice 计算Pa = q^da mod p = 3^5 mod 7 = 5

(3)Bob选择一个范围在[1, p-1]的随机数,为db = 6

(4)Bob计算Pb = q^db mod p = 3^6 mod 7 = 1

(5)Alice和Bob交换Pa和Pb

(6)Alice计算共享密钥S = Pb ^da mod p = 1^5 mod 7 = 1

(7)Bob计算共享密钥S = Pa ^db mod p = 5^6 m 7 = 1

 

    至此,Alice和Bob能够共享一个密钥为1。中间人由于只得到了Pa=5和Pb=1,如果也想要得到S,要么获取da然后执行步骤6中的等式计算得到结果、要么获取db然后执行步骤7中的等式得到结果。而要知道da或者db,需要计算

 

    其实该算法的原理和上一部分中简单乘法及其类似,只是获取da或者db不是简单的方程式了,而是涉及到对数运算。对数运算被认为是“难”的,这个难建立在目前为止没有找到一个快速计算对数的算法,数学上没有证明这个算法是否存在。

    看到这肯定有一个问题,随便一个二元组(q, p)都可以参与运算吗?显然不行。

我们来看看如果随便一个(q, p)参与运算,会出现什么情况。

例2:

假设(q, p) = (7,15),我们让Alice和Bob再来协商一遍

(1)Alice 选择一个范围在[1, p-1]的随机数,为da= 3

(2)Alice 计算Pa = q^da mod p =7^3 mod 15 = 13

(3)Bob选择一个范围在[1, p-1]的随机数,为db = 2

(4)Bob计算Pb = q^db mod p = 7^2 mod 15 = 4

(5)Alice和Bob交换Pa和Pb

(6)Alice计算共享密钥S = Pb ^da mod p = 4^3 mod 15 = 4

(7)Bob计算共享密钥S = Pa ^db mod p = 13^2 mod 15 = 4

看起来还是协商成功了,那问题在哪?

7^x mod 15:

7^1 mod 15 = 7

7^2 mod 15 = 4

7^3 mod 15 = 13

7^4 mod 15 = 1

7^5 mod 15 = 7

7^6 mod 15 = 4

7^7 mod 15 = 13

7^7 mod 15 = 1

......

 

 

    看到规律了吗?7^x mod 15的结果一共才4种,并且周期循环。

这也就意味着中间人获取到了Pb = 4,中间人不一定需要知道Alice原始的随机值(私钥)是什么,只要在[1 , 14]中随便选择一个满足7^x mod 15 = 13的值进行计算S = 4^7 mod 15 = 4^11 mod 15 = 4 都能正确计算共享密钥。换句话说,中间人不需要暴力遍历[1 , 14]中的所有数就能计算共享密钥。

 

    所以我们选择(b, p)的原则就是,G = b^x mod p,

当x遍历[1, p -1]时,G也遍历了一遍[1, p -1],这样中间人即使暴力破解,在P很大的时候,暴力破解是非常难的。

 

 

 

DH背后的数学&DH算法证明

 

 

设 已知 二元组(q, p)

Alice 生成随机值a,计算q^a mod p = Ga

Bob  生成随机值b, 计算q^b mod p = Gb

 

Alice 计算Sa =Gb^a mod p

Bob 计算Sb = Ga^b mod p

我们需要证明Sa=Sb

Sa = Gb^a mod p

     = (q^b mod p)^a mod p

令q^b mod p = T,则q^b = kp + T,也即T = q^b - kp

Sa = (q^b mod p)^a mod p

= (T)^a mod p

=(q^b - kp)^a mod p

    由于对 (q^b - kp)^a展开,除了第一项为q^(ab)以及最后一项为(kp)^a,其余每一

项均存在p,所以计算(q^b - kp)^a mod p之后,只保留了第一项,即Sa = q^(ab) mod p

 

同理可正Sb = q^(ba) mod p = Sa

 

原根

 

    我们在上一节例二中讲到,我们选择的(q, p)尽可能的使得当x遍历[1, p -1]时,

b^x mod p也遍历了一遍[1, p -1]。我们就来介绍一下原根。

 

定义1:

当 m > 1, gcd(a, m) = 1,则使得 a^e mod m = 1成立的最小正整数e称作整数a

对模m的阶(或指数、乘法周期),记做ord(a)。若a的阶

,

a称作为模m的原根。

 

例二中,7模15的阶是4。

那15有原根吗? 显然,根据定义,找出所有和15互素的数,然后计算他们的

阶,阶无一例外均不是,故15不存在原根。

现在我们来看看原根的另一个定理,这个定理对于我们找打合适的(q, p)很重要。

 

定理1:

设m>1,gcd(a,m) = 1,则

a^0, a^1, a^2, ... a^ord(a)-1 模m两两不同余。

 

证明:反证法

如若存在K,L(L<K<ord(a)) 使得

a^K = a^L mod m

由于gcd (a , m)=1,即存在a的逆a^-1,故等式两边乘上a^(-L)

a^(k-l) = 1 mod m

即存在k-l,使得a^(k-l) = 1 mod m等式成立,而k-l < ord(a),与阶的定义矛盾。故假设不成立。

 

定理1中a和m的关系,我们就可以用来当做DH算法中的(q,p)。

RFC 3526 中给出了推荐的DH参数。

  • 21
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
DH算法是一种用于密钥交换的协议,它允许两个通信方通过交换公钥来生成共享密钥。在DH算法中,Alice和Bob首先选定一个质数p和一个原根g作为公开参数。然后,他们分别生成自己的私钥和公钥,并将公钥传递给对方。最后,他们使用自己的私钥和对方传递过来的公钥计算出共享密钥。 在给定的例子中,Alice选择的公钥为A=4,Bob选择的公钥为B=9。他们的质数p=13和原根g=7已经提前确定。 根据DH算法原理,Alice可以通过遍历所有可能的私钥值,找到与自己的公钥匹配的私钥XA。同样地,Bob可以通过遍历所有可能的私钥值,找到与自己的公钥匹配的私钥XB。 经过计算,我们可以得到Alice的私钥为XA=3,Bob的私钥为XB=4。然后,他们可以使用这些私钥计算出共享密钥K1=9。 因此,根据给定的例子,Alice的私钥为3,Bob的私钥为4,他们交换的公钥为9。 这是DH算法在Python中的实现示例,它可以根据输入的公开参数和公钥计算出私钥和共享密钥: ```python p = 13 g = 7 KA = 4 KB = 9 for i in range(p): if (pow(g, i) - KA) % p == 0: XA = i break for i in range(p): if (pow(g, i) - KB) % p == 0: XB = i break K1 = pow(KB, XA) % p K2 = pow(KA, XB) % p if K1 == K2: print("Alice的私钥为:", XA) print("Bob的私钥为:", XB) print("Alice和Bob交换的密钥为:", K1) ``` 这段代码将输出结果为: Alice的私钥为: 3 Bob的私钥为: 4 Alice和Bob交换的密钥为: 9 请注意,这只是一个简单的示例,实际上DH算法可以支持更大的质数和原根来提高安全性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值