1. 前言
对于工业机械臂而言,运动学是不考虑力学特性的情况下对机械臂的几何参数与其位置、速度、加速度等运动特性的关系研究。DH建模是运动学的基础,全称为Denavit-Hartenberg建模方法,是一种广泛应用于机器人运动学中的建模技术。该方法通过在每个连杆上建立坐标系,并利用齐次坐标变换来实现连杆之间的坐标转换。通过依次变换,可以推导出末端执行器相对于基坐标系的位姿,从而建立机器人的运动学方程。
一般DH建模分为标准DH法(SDH)和改进DH法(MDH),这两种方法对于串联开环的机械臂结构来说没有什么影响,只是建模方式略有不同,SDH将坐标系建立在机械臂连杆末端,而MDH则将坐标系建立在连杆首段。两者之间的异同点另开篇阐述,这里将以IRB4600型六自由度工业机械臂为例,选择标准DH建模方法,建立其正运动学模型。
2. 标准DH建模
2.1 连杆坐标系
标准DH模型坐标系建立规则可以概括如下几个步骤。
(1)所有关节,无一例外用z轴表示。如果是关节是旋转的,z轴位于按右手定则选装的方向,如果关节是滑动的,z轴为沿实现运动的方向。在每一种情况下,关节i处的z轴(以及该关节的本地参考坐标系)的下标为i-1。
(2) 通常关节不一定平行或相交。因此,通常z轴是斜线,但是总有一条距离最短的公垂线,它正交于任意两条斜线。通常在公垂线方向上定义x轴。所以如果 ai表示 zi−1 与 zi 之间的公垂线,则 xi的方向沿 ai。
(3)如果两个关节的z轴平行,选取与前一关节的公垂线共线的一条公垂线;如果两个相邻关节的z轴是相交的,那么它们之间没有公垂线,可选取两条z轴的叉积方向作为x轴。
(4)根据右手坐标系原则确定y轴方向
结合IRB4600-20/2.50型6轴机器人的机械结构,建立关于IRB4600-20/2.50型机器人的连杆坐标系。如图1所示。
2.2 DH参数表
连杆坐标系确立后,就可以根据连杆坐标系的位置相对关系来确定用于指示坐标系{i-1} 和坐标系{i}间相对位置和方位的4个几何参数。四个参数的定义如下:
ai:在连杆坐标系中,沿着xi轴,从zi轴到zi+!轴平移的距离;
αi:在连杆坐标系中,绕着xi轴,从zi轴到zi+!轴转过的角度;
di:在连杆坐标系中,沿着zi轴,从xi轴到xi+1轴平移的距离;
θi:在连杆坐标系中,绕着zi轴,从xi轴到xi+1轴转过的角度。
根据前面建立的连杆坐标系和建模规则,可分析IRB4600-20/2.50型六自由度工业机器人的运动学几何参数,结合工业机器人各个部件的出厂参数得出具体数据,如表1所示。
连杆 | ai(mm) | di(mm) | αi(°) | θi(°) | 关节运动范围 |
---|---|---|---|---|---|
1 | 170 | 495 | -90 | 0 | -180-180 |
2 | 1095 | 0 | 0 | -90 | -90-180 |
3 | 175 | 0 | -90 | 0 | -180-75 |
4 | 0 | 1230.5 | 90 | 0 | -400-400 |
5 | 0 | 0 | 90 | -180 | -125-125 |
6 | 0 | 85 | 0 | 0 | -400-400 |
3. 正运动学分析
根据空间坐标转换的原理,坐标里两个坐标系的变换可以用齐次变换矩阵的乘积形式来描述:
基于IRB4600型机器人连杆坐标系和几何参数,可得连杆坐标变换的通用公式:
其中,矩阵的前3*3部分表示的是两个相邻坐标系之间的旋转变换,最后一列表示的两个相邻坐标系之间的平移变换,对于n个自由度的机器人,可通过上述规则建立各个关节的变换矩阵,这样就可实现工业机器人从基坐标系到任意一个连杆坐标系变换。
根据给出的关节参数和各个关节角度,然后计算机器人末端连杆在基坐标系中所处的位置和姿态,这个过程就叫做运动学正解过程。依照标准D-H建模原则针对IRB4600型机器人建立连杆坐标系之间的坐标变换模型后,再将表1中的连杆参数代入机器人齐次变换矩阵的通式中,可得 6 个相邻坐标系之间的齐次变换矩阵:
机器人末端法兰盘中心相对于机器人基坐标系的位姿可以由式1.3中6个齐次变换矩阵依次相乘得到如下矩阵: