李宏毅深度学习打卡Task03:误差和梯度下降

本文探讨了模型复杂度增加时误差的指数上升趋势,主要源于偏差和方差两方面。误差反映了模型的整体准确性,偏差衡量模型预测与真实值的差距,而方差则表示模型预测的不稳定性。欠拟合时,模型需要增加复杂度,如添加更多参数;过拟合则需寻求更多数据。理解并平衡偏差与方差对于优化模型至关重要。
摘要由CSDN通过智能技术生成

任务p5-8

Error随着模型复杂增加呈指数上升趋势,主要有两个来源。

Error (误差)= Bias(偏差)+ Variance(方差)

Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。

模型没有很高的训练训练集偏差bias就会过大-欠拟合,如果训练集上得到的error很小,测试集error很大,意味着方差较大,过拟合。

欠拟合应该重新设计模型,加更多的参数或者更多次幂更复杂的模型,过拟合则是寻找更多的数据。

梯度下降

梯度下降是一种方法,用来找一组参数θ(比如之前的w和b),让损失函数越小越好。本内容全是公式和图例,不做摘录。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值