任务p5-8
Error随着模型复杂增加呈指数上升趋势,主要有两个来源。
Error (误差)= Bias(偏差)+ Variance(方差)
Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。
模型没有很高的训练训练集偏差bias就会过大-欠拟合,如果训练集上得到的error很小,测试集error很大,意味着方差较大,过拟合。
欠拟合应该重新设计模型,加更多的参数或者更多次幂更复杂的模型,过拟合则是寻找更多的数据。
梯度下降
梯度下降是一种方法,用来找一组参数θ(比如之前的w和b),让损失函数越小越好。本内容全是公式和图例,不做摘录。