深度学习一学期游,走马观花看看有哪些技术,可能有什么
各行各业都有深度学习的需求
深度学习-炼金术
一,为什么要使用卷积神经网络?
CNN常常被用在影像处理上,比如说你想要做影像的分类,就是training一个neural network,input一张图片,然后把这张图片表示成里面的像素(pixel)即--很长很长的矢量(vector)。通常会遇到问题:
1,在training neural network时,我们希望在network的structure里面,每一个neural就是代表了一个最基本的classifier,事实是在文件上根据训练的结果,你有可能会得到很多这样的结论。
2,直接用fully connect feedforward network来做影像处理的时候,需要太多参数。
卷积神经网络能简化neural network的架构,处理影像时,某些weight用不上,我们一开始就把它滤掉。不是用fully connect feedforward network,而是用比较少的参数来做影像处理这件事。下面3个方面进行阐述:
1,小区域;2,相同的图案;3,二次抽样。
二,CNN的架构如下:
1,输入一张图片后通过卷积层(convolution layer)
2,然后做max pooling
3,再做卷积
4,2-3步骤重复多次
5,压平
6,最后把flatten的output丢到一般全连接前馈网络,就可以得到影像辨识的结果
三,卷积(Convolution)
四,卷积和全连接之间的关系
五,Max pooling
六,压平
CNN学到了什么?(什么能让网络响应最大,固定参数,找到x,去让output最大)
--介绍了比较有意思的Deep Dream和DeepStyle
CNN应用:围棋,语音,文本。
总结:
经过十天的学习,收获了一些新知,因为不是机器学习的从业者和科班学生,所以我的定位就是跟着课程设置走,看指定视频和文档,没有更深入的学习经典教程和学术文章,也没有跑代码。
我的感受是机器学习在金融量化实践中的应用,主要是更快捷的找最优参数,而不是主动寻找交易策略,交易策略还是需要人工自顶向下,基于现实逻辑设定的。具体到个人,也不需要去深究公式如何推演,会用库和调参就行。
另外深度学习的应用越来越广,即便个人的工作无法用到,多了解这个大领域的最新成果,对开拓眼界,对行业未来发展的预判,新技术引起的职业变革都是很有好处的,感谢DataWhale发掘的课程,自驱力不足够的小白也能跟下来。