李宏毅深度学习打卡Task07:总结

 深度学习一学期游,走马观花看看有哪些技术,可能有什么

各行各业都有深度学习的需求

深度学习-炼金术

 

 

一,为什么要使用卷积神经网络?

CNN常常被用在影像处理上,比如说你想要做影像的分类,就是training一个neural network,input一张图片,然后把这张图片表示成里面的像素(pixel)即--很长很长的矢量(vector)。通常会遇到问题:

1,在training neural network时,我们希望在network的structure里面,每一个neural就是代表了一个最基本的classifier,事实是在文件上根据训练的结果,你有可能会得到很多这样的结论。

2,直接用fully connect feedforward network来做影像处理的时候,需要太多参数。

卷积神经网络能简化neural network的架构,处理影像时,某些weight用不上,我们一开始就把它滤掉。不是用fully connect feedforward network,而是用比较少的参数来做影像处理这件事。下面3个方面进行阐述:

1,小区域;2,相同的图案;3,二次抽样。

二,CNN的架构如下:

1,输入一张图片后通过卷积层(convolution layer)

2,然后做max pooling

3,再做卷积

4,2-3步骤重复多次

5,压平

6,最后把flatten的output丢到一般全连接前馈网络,就可以得到影像辨识的结果

三,卷积(Convolution)

四,卷积和全连接之间的关系

五,Max pooling

六,压平

CNN学到了什么?(什么能让网络响应最大,固定参数,找到x,去让output最大)

--介绍了比较有意思的Deep Dream和DeepStyle

CNN应用:围棋,语音,文本。

总结:

经过十天的学习,收获了一些新知,因为不是机器学习的从业者和科班学生,所以我的定位就是跟着课程设置走,看指定视频和文档,没有更深入的学习经典教程和学术文章,也没有跑代码。

我的感受是机器学习在金融量化实践中的应用,主要是更快捷的找最优参数,而不是主动寻找交易策略,交易策略还是需要人工自顶向下,基于现实逻辑设定的。具体到个人,也不需要去深究公式如何推演,会用库和调参就行。

另外深度学习的应用越来越广,即便个人的工作无法用到,多了解这个大领域的最新成果,对开拓眼界,对行业未来发展的预判,新技术引起的职业变革都是很有好处的,感谢DataWhale发掘的课程,自驱力不足够的小白也能跟下来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值