数据挖掘
yalipf
这个作者很懒,什么都没留下…
展开
-
pandas_第二章索引
第2章 索引 import numpy as np import pandas as pd df = pd.read_csv('data/table.csv',index_col='ID') df.head() 一、单级索引 1. loc方法、iloc方法、[]操作符 最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点 (a)loc方法(...原创 2020-04-23 23:57:48 · 143 阅读 · 0 评论 -
Datawhale 零基础入门数据挖掘-Task4 建模调参 四、建模与调参
Datawhale 零基础入门数据挖掘-Task4 建模调参——四、建模与调参4.1 学习目标4.2 内容介绍4.3 相关原理介绍与推荐4.3.1 线性回归模型4.3.2 决策树模型4.3.3 GBDT模型4.3.4 XGBoost模型4.3.5 LightGBM模型4.3.6 推荐教材: 地址:https://tianchi.aliyun.com/notebook-ai/detail?spm=5...原创 2020-03-31 21:44:32 · 415 阅读 · 0 评论 -
二手车交易价格预测--3特征工程
二手车交易价格预测--3特征工程三、 特征工程目标3.1 特征工程目标3.2 内容介绍 三、 特征工程目标 3.1 特征工程目标 对于特征进行进一步分析,并对于数据进行处理, 完成对于特征工程的分析,并对于数据进行一些图表或者文字总结 3.2 内容介绍 常见的特征工程包括: 异常处理 通过箱线图(或 3-Sigma)分析删除异常值; BOX-COX 转换(处理有偏分布); 长尾截断; 特征...原创 2020-03-26 21:51:51 · 190 阅读 · 0 评论 -
第一次认真的二手车交易价格预测--赛题分析
二手车交易价格预测--赛题分析数据比赛步骤一. 赛题分析1.1 学习目标1.2 了解赛题1.2.1 赛题概况1.2.2 数据概况train.csv1.2.3 预测指标一般问题评价指标说明:1.2.4 分析赛题1.3代码解读1.3.1 导入函数工具箱1.3.2 数据读取1.4经验借鉴 数据比赛步骤 1.赛题分析 2. 数据分析 3. 特征工程 4. 建模调参 5. 模型融合 一. 赛题分析 1.1 ...原创 2020-03-20 23:53:16 · 2528 阅读 · 0 评论