
python
yalipf
这个作者很懒,什么都没留下…
展开
-
修改conda环境安装路径,解决环境默认安装在C盘问题
修改conda环境安装路径,解决环境默认安装在C盘问题。原创 2023-09-04 10:37:52 · 333 阅读 · 0 评论 -
修改conda环境安装路径,解决环境默认安装在C盘问题
修改conda环境安装路径,解决环境默认安装在C盘问题。原创 2023-09-01 11:38:34 · 214 阅读 · 0 评论 -
y元组 and 集合and_zip函数
元组 and 集合5.3. 元组和序列5.4. 集合 5.3. 元组和序列 我们看到列表和字符串有很多共同特性,例如索引和切片操作。他们是 序列 数据类型(参见 序列类型 — list, tuple, range.)中的两种。随着 Python 语言的发展,其他的序列类型也会被加入其中。这里介绍另一种标准序列类型: 元组。 一个元组由几个被逗号隔开的值组成,例如 >>> t = 12345, 54321, 'hello!' >>> t[0] 12345 >>&原创 2020-07-09 23:55:14 · 754 阅读 · 0 评论 -
不可变对象--可变对象---序列类型
immutable. – 不可变 具有固定值的对象。**不可变对象包括数字、字符串和元组。**这样的对象不能被改变。如果必须存储一个不同的值,则必须创建新的对象。它们在需要常量哈希值的地方起着重要作用,例如作为字典中的键。 mutable. – 可变 可变对象可以在其 id() 保持固定的情况下改变其取值。另请参见 immutable,最常见的可变对象就是列表 序列类型 — list, tuple, range. ...原创 2020-07-09 17:48:10 · 295 阅读 · 0 评论 -
字典————python 文档学习
字典————python 文档学习1. 创建字典方式2. 小例子3. dict()构造函数小技巧4.循环技巧5 for 语句6 迭代器:7 这些是字典所支持的操作(因而自定义的映射类型也应当支持): python标准库: dict. python教程: link. python教程: link. 迭代器: link. 作为演示,以下示例返回的字典均等于{"one": 1, "two": 2, "three": 3}: 理解字典的最好方式,就是将它看做是一个 键: 值 对的集合,键必须是唯一的(在一个字典中原创 2020-06-30 20:04:16 · 350 阅读 · 0 评论 -
数据结构---列表[pf]
https://docs.python.org/zh-cn/3/tutorial/datastructures.html#more-on-lists原创 2020-07-09 17:35:01 · 203 阅读 · 0 评论 -
深拷贝与浅拷贝2
深拷贝与浅拷贝2 Python 直接赋值、浅拷贝和深度拷贝解析: link.原创 2020-07-08 22:58:28 · 115 阅读 · 0 评论 -
排序指南
排序指南 排序指南: link.原创 2020-07-08 22:49:05 · 131 阅读 · 0 评论 -
函数之特殊参数
函数之特殊参数函数示例任意的参数列表解包参数列表Lambda 表达式文档字符串 默认情况下,函数的参数传递形式可以是位置参数或是显式的关键字参数。 为了确保可读性和运行效率,限制允许的参数传递形式是有意义的,这样开发者只需查看函数定义即可确定参数项是仅按位置、按位置也按关键字,还是仅按关键字传递。 函数的定义看起来可以像是这样: def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2): ----------- ---------- -----原创 2020-07-04 21:38:02 · 320 阅读 · 0 评论 -
函数的定义以及关键字参数
函数4.6. 定义函数4.7. 函数定义的更多形式4.7.1. 参数默认值 4.6. 定义函数 我们可以创建一个输出任意范围内 Fibonacci 数列的函数: >>> def fib(n): # write Fibonacci series up to n ... """Print a Fibonacci series up to n.""" ... a, b = 0, 1 ... while a < n: ... print(a, e原创 2020-07-04 16:54:16 · 2406 阅读 · 0 评论 -
3.1.3. python文档中列表
3.1.3. 列表 Python 中可以通过组合一些值得到多种 复合 数据类型。其中最常用的 列表 ,可以通过方括号括起、逗号分隔的一组值(元素)得到。一个 列表 可以包含不同类型的元素,但通常使用时各个元素类型相同: >>> squares = [1, 4, 9, 16, 25] >>> squares [1, 4, 9, 16, 25] 和字符串(以及各种内置的 sequence 类型)一样,列表也支持索引和切片: >>> squares[0]原创 2020-07-01 17:38:08 · 121 阅读 · 0 评论 -
4.1_if语句————4.4. break 和 continue 语句,以及循环中的 else 子句
if语句if 语句4.4. break 和 continue 语句,以及循环中的 else 子句 if 语句 if 语句了,可以有零个或多个 elif 部分,以及一个可选的 else 部分。 关键字 ‘elif’ 是 ‘else if’ 的缩写,适合用于避免过多的缩进。 一个 if … elif … elif … 序列可以看作是其他语言中的 switch 或 case 语句的替代。 x= int(input("please input one integer")) if x<0: x==0原创 2020-06-30 23:43:09 · 363 阅读 · 0 评论 -
4.3_range()循环
range()循环range对象的一些例子 range()函数: link. len()函数: link. range对象的一些例子 range 类型表示不可变的数字序列,通常用于在 for 循环中循环指定的次数。 range 对象确实支持负索引,但是会将其解读为从正索引所确定的序列的末尾开始索引。 如果需要遍历一个数字序列,则可以采取 for i in range(5): print(i) 0 1 2 3 4 如需要以序列的索引来迭代,则您可以将 range() 和 len()原创 2020-06-30 22:46:18 · 841 阅读 · 0 评论 -
陈光老师---递归
递归:传递任务,回到原点。 当递归次数很多时,系统有可能会出现堆栈溢出。 即在时序上做设计,每一次完成一步,剩下的交给下家完成。 3递归的深度不能太深,防止出现堆栈溢出 最后一次不需要递归,只需要满足终止条件即可。 ## 斐波拉其数列 def fibo(n): if n<=2: return 1 return fibo(n-1)+fibo(n-2) ##有记忆的斐波拉其数列 ##初始记忆 fib_mem = {1:1, 2:1} #字典 #当输入为1时,输出为1;当...原创 2020-06-03 20:53:25 · 251 阅读 · 0 评论 -
陈光老师——深拷贝浅拷贝--
import copy a= [1,2,[3,4]] //运行结果 b=[1,2,[3,4]]原创 2020-05-05 19:15:41 · 262 阅读 · 1 评论 -
《利用PYTHON进行数据分析》——4.1 NUMPY的NDARRAY一种多维数组对象——数组转置和轴对换——读书笔记
《利用PYTHON进行数据分析》——4.1 NUMPY的NDARRAY一种多维数组对象——数组转置和轴对换——读书笔记4.1 NUMPY的NDARRAY一种多维数组对象-----数组转置和轴对换总结 链接: 原文链接. 链接: Python · numpy · axis. 4.1 NUMPY的NDARRAY一种多维数组对象-----数组转置和轴对换 转置是重塑的一种特殊形式,他返回的是一个源数据的视图(不会进行任何复制的操作) 数组不仅有transpose方法,还有一个特殊的T属性: In [126]: a原创 2020-05-27 21:50:14 · 237 阅读 · 0 评论 -
pytorch文档学习1
pytorch文档学习1 torch.sparse_coo_tensor(indices, values, size=None, dtype=None, device=None, requires_grad=False) → Tensor indices (array_like) – Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar, and other types. Will be cast to a tor原创 2020-05-21 00:24:38 · 96 阅读 · 0 评论 -
Datawhale 零基础入门CV赛事-Task1 赛题理解
Datawhale 零基础入门CV赛事-Task1 赛题理解1 赛题理解1.1 赛题目标1.2 数据标签1.3 评测指标1.4 读取数据1.5 解题思路 本章内容将会对街景字符识别赛题进行背景讲解,对赛题数据的读取进行说明,并给出集中的解题思路。 1 赛题理解 赛题名称:零基础入门CV之街道字符识别 赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。 为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。 1.原创 2020-05-20 21:08:27 · 154 阅读 · 0 评论 -
numpy学习
numpy学习22.2 The Basics 2.2 The Basics NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of non-negative integers. In NumPy dimensions are called axes NumPy的主原创 2020-05-20 18:45:43 · 275 阅读 · 0 评论 -
numpy学习
numpy学习11.1 What is numpy 1.1 What is numpy Numpy is fundamental package for science computing in Python.It is a Python library that provides a multidimensional array object,various derived objects(sunch as masked arrays and matrices),and an assortment of原创 2020-05-20 17:33:48 · 194 阅读 · 0 评论 -
pandas第三章
第3章 分组 import numpy as np import pandas as pd df = pd.read_csv('data/table.csv',index_col='ID') df.head() 一、SAC过程 1. 内涵 SAC指的是分组操作中的split-apply-combine过程 其中split指基于某一些规则,将数据拆成若干组,apply是指对每一组独立地使用函数,c...原创 2020-04-26 22:38:38 · 159 阅读 · 0 评论 -
pandas_第二章索引
第2章 索引 import numpy as np import pandas as pd df = pd.read_csv('data/table.csv',index_col='ID') df.head() 一、单级索引 1. loc方法、iloc方法、[]操作符 最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点 (a)loc方法(...原创 2020-04-23 23:57:48 · 149 阅读 · 0 评论 -
第1章 Pandas基础
第1章 Pandas基础 import pandas as pd import numpy as np 查看Pandas版本 pd.__version__ 一、文件读取与写入 1. 读取 (a)csv格式 df = pd.read_csv('data/table.csv') df.head() //查看前五行 (b)txt格式 df_txt = pd.read_table('data/ta...原创 2020-04-20 23:45:42 · 207 阅读 · 0 评论