python
yalipf
这个作者很懒,什么都没留下…
展开
-
修改conda环境安装路径,解决环境默认安装在C盘问题
修改conda环境安装路径,解决环境默认安装在C盘问题。原创 2023-09-04 10:37:52 · 308 阅读 · 0 评论 -
修改conda环境安装路径,解决环境默认安装在C盘问题
修改conda环境安装路径,解决环境默认安装在C盘问题。原创 2023-09-01 11:38:34 · 201 阅读 · 0 评论 -
y元组 and 集合and_zip函数
元组 and 集合5.3. 元组和序列5.4. 集合5.3. 元组和序列我们看到列表和字符串有很多共同特性,例如索引和切片操作。他们是 序列 数据类型(参见 序列类型 — list, tuple, range.)中的两种。随着 Python 语言的发展,其他的序列类型也会被加入其中。这里介绍另一种标准序列类型: 元组。一个元组由几个被逗号隔开的值组成,例如>>> t = 12345, 54321, 'hello!'>>> t[0]12345>>&原创 2020-07-09 23:55:14 · 748 阅读 · 0 评论 -
不可变对象--可变对象---序列类型
immutable. – 不可变具有固定值的对象。**不可变对象包括数字、字符串和元组。**这样的对象不能被改变。如果必须存储一个不同的值,则必须创建新的对象。它们在需要常量哈希值的地方起着重要作用,例如作为字典中的键。mutable. – 可变可变对象可以在其 id() 保持固定的情况下改变其取值。另请参见 immutable,最常见的可变对象就是列表序列类型 — list, tuple, range....原创 2020-07-09 17:48:10 · 285 阅读 · 0 评论 -
字典————python 文档学习
字典————python 文档学习1. 创建字典方式2. 小例子3. dict()构造函数小技巧4.循环技巧5 for 语句6 迭代器:7 这些是字典所支持的操作(因而自定义的映射类型也应当支持):python标准库: dict.python教程: link.python教程: link.迭代器: link.作为演示,以下示例返回的字典均等于{"one": 1, "two": 2, "three": 3}:理解字典的最好方式,就是将它看做是一个 键: 值 对的集合,键必须是唯一的(在一个字典中原创 2020-06-30 20:04:16 · 341 阅读 · 0 评论 -
数据结构---列表[pf]
https://docs.python.org/zh-cn/3/tutorial/datastructures.html#more-on-lists原创 2020-07-09 17:35:01 · 193 阅读 · 0 评论 -
深拷贝与浅拷贝2
深拷贝与浅拷贝2Python 直接赋值、浅拷贝和深度拷贝解析: link.原创 2020-07-08 22:58:28 · 110 阅读 · 0 评论 -
排序指南
排序指南排序指南: link.原创 2020-07-08 22:49:05 · 127 阅读 · 0 评论 -
函数之特殊参数
函数之特殊参数函数示例任意的参数列表解包参数列表Lambda 表达式文档字符串默认情况下,函数的参数传递形式可以是位置参数或是显式的关键字参数。 为了确保可读性和运行效率,限制允许的参数传递形式是有意义的,这样开发者只需查看函数定义即可确定参数项是仅按位置、按位置也按关键字,还是仅按关键字传递。函数的定义看起来可以像是这样:def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2): ----------- ---------- -----原创 2020-07-04 21:38:02 · 309 阅读 · 0 评论 -
函数的定义以及关键字参数
函数4.6. 定义函数4.7. 函数定义的更多形式4.7.1. 参数默认值4.6. 定义函数我们可以创建一个输出任意范围内 Fibonacci 数列的函数:>>> def fib(n): # write Fibonacci series up to n... """Print a Fibonacci series up to n."""... a, b = 0, 1... while a < n:... print(a, e原创 2020-07-04 16:54:16 · 2379 阅读 · 0 评论 -
3.1.3. python文档中列表
3.1.3. 列表Python 中可以通过组合一些值得到多种 复合 数据类型。其中最常用的 列表 ,可以通过方括号括起、逗号分隔的一组值(元素)得到。一个 列表 可以包含不同类型的元素,但通常使用时各个元素类型相同:>>> squares = [1, 4, 9, 16, 25]>>> squares[1, 4, 9, 16, 25]和字符串(以及各种内置的 sequence 类型)一样,列表也支持索引和切片:>>> squares[0]原创 2020-07-01 17:38:08 · 117 阅读 · 0 评论 -
4.1_if语句————4.4. break 和 continue 语句,以及循环中的 else 子句
if语句if 语句4.4. break 和 continue 语句,以及循环中的 else 子句if 语句if 语句了,可以有零个或多个 elif 部分,以及一个可选的 else 部分。 关键字 ‘elif’ 是 ‘else if’ 的缩写,适合用于避免过多的缩进。 一个 if … elif … elif … 序列可以看作是其他语言中的 switch 或 case 语句的替代。x= int(input("please input one integer"))if x<0: x==0原创 2020-06-30 23:43:09 · 350 阅读 · 0 评论 -
4.3_range()循环
range()循环range对象的一些例子range()函数: link.len()函数: link.range对象的一些例子range 类型表示不可变的数字序列,通常用于在 for 循环中循环指定的次数。range 对象确实支持负索引,但是会将其解读为从正索引所确定的序列的末尾开始索引。如果需要遍历一个数字序列,则可以采取for i in range(5): print(i) 01234如需要以序列的索引来迭代,则您可以将 range() 和 len()原创 2020-06-30 22:46:18 · 822 阅读 · 0 评论 -
陈光老师---递归
递归:传递任务,回到原点。当递归次数很多时,系统有可能会出现堆栈溢出。即在时序上做设计,每一次完成一步,剩下的交给下家完成。3递归的深度不能太深,防止出现堆栈溢出最后一次不需要递归,只需要满足终止条件即可。## 斐波拉其数列def fibo(n): if n<=2: return 1 return fibo(n-1)+fibo(n-2)##有记忆的斐波拉其数列##初始记忆fib_mem = {1:1, 2:1} #字典 #当输入为1时,输出为1;当...原创 2020-06-03 20:53:25 · 243 阅读 · 0 评论 -
陈光老师——深拷贝浅拷贝--
import copya= [1,2,[3,4]]//运行结果b=[1,2,[3,4]]原创 2020-05-05 19:15:41 · 256 阅读 · 1 评论 -
《利用PYTHON进行数据分析》——4.1 NUMPY的NDARRAY一种多维数组对象——数组转置和轴对换——读书笔记
《利用PYTHON进行数据分析》——4.1 NUMPY的NDARRAY一种多维数组对象——数组转置和轴对换——读书笔记4.1 NUMPY的NDARRAY一种多维数组对象-----数组转置和轴对换总结链接: 原文链接.链接: Python · numpy · axis.4.1 NUMPY的NDARRAY一种多维数组对象-----数组转置和轴对换转置是重塑的一种特殊形式,他返回的是一个源数据的视图(不会进行任何复制的操作)数组不仅有transpose方法,还有一个特殊的T属性:In [126]: a原创 2020-05-27 21:50:14 · 232 阅读 · 0 评论 -
pytorch文档学习1
pytorch文档学习1torch.sparse_coo_tensor(indices, values, size=None, dtype=None, device=None, requires_grad=False) → Tensorindices (array_like) – Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar, and other types. Will be cast to a tor原创 2020-05-21 00:24:38 · 91 阅读 · 0 评论 -
Datawhale 零基础入门CV赛事-Task1 赛题理解
Datawhale 零基础入门CV赛事-Task1 赛题理解1 赛题理解1.1 赛题目标1.2 数据标签1.3 评测指标1.4 读取数据1.5 解题思路本章内容将会对街景字符识别赛题进行背景讲解,对赛题数据的读取进行说明,并给出集中的解题思路。1 赛题理解赛题名称:零基础入门CV之街道字符识别赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。1.原创 2020-05-20 21:08:27 · 144 阅读 · 0 评论 -
numpy学习
numpy学习22.2 The Basics2.2 The BasicsNumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of non-negative integers. In NumPy dimensions are called axesNumPy的主原创 2020-05-20 18:45:43 · 251 阅读 · 0 评论 -
numpy学习
numpy学习11.1 What is numpy1.1 What is numpyNumpy is fundamental package for science computing in Python.It is aPython library that provides a multidimensional array object,variousderived objects(sunch as masked arrays and matrices),and an assortmentof原创 2020-05-20 17:33:48 · 187 阅读 · 0 评论 -
pandas第三章
第3章 分组import numpy as npimport pandas as pddf = pd.read_csv('data/table.csv',index_col='ID')df.head()一、SAC过程1. 内涵SAC指的是分组操作中的split-apply-combine过程其中split指基于某一些规则,将数据拆成若干组,apply是指对每一组独立地使用函数,c...原创 2020-04-26 22:38:38 · 155 阅读 · 0 评论 -
pandas_第二章索引
第2章 索引import numpy as npimport pandas as pddf = pd.read_csv('data/table.csv',index_col='ID')df.head()一、单级索引1. loc方法、iloc方法、[]操作符最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点(a)loc方法(...原创 2020-04-23 23:57:48 · 143 阅读 · 0 评论 -
第1章 Pandas基础
第1章 Pandas基础import pandas as pdimport numpy as np查看Pandas版本pd.__version__一、文件读取与写入1. 读取(a)csv格式df = pd.read_csv('data/table.csv')df.head() //查看前五行(b)txt格式df_txt = pd.read_table('data/ta...原创 2020-04-20 23:45:42 · 201 阅读 · 0 评论