1 将矩阵化为最简形
以下是将矩阵 (1725230−11−1210640412−1)\begin{pmatrix} 1 & 7 & 2 & 5 & 2 \\ 3 & 0 & -1 & 1 & -1 \\ 2 & 1 & 0 & 6 & 4 \\ 0 & 4 & 1 & 2 & -1 \end{pmatrix} 132070142−10151622−14−1 化为最简形的 Python 代码,并以矩阵形式展示结果:
from sympy import Matrix
# Define the matrix A
A = Matrix([
[1, 7, 2, 5, 2],
[3, 0, -1, 1, -1],
[2, 1, 0, 6, 4],
[0, 4, 1, 2, -1]
])
# Compute the reduced row echelon form (rref)
rref_matrix, pivot_columns = A.rref()
# Display the result
print("The matrix in reduced row echelon form is:")
print(rref_matrix)
运行此代码将输出:
The matrix in reduced row echelon form is:
Matrix([
[1, 0, 0, 0, 3/2],
[0, 1, 0, 0, -2],
[0, 0, 1, 0, 6],
[0, 0, 0, 1, 1/2]])
化为最简形后的矩阵表示为:
(1000320100−200106000112) \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{3}{2} \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & \frac{1}{2} \end{pmatrix} 100001000010000123−2621
2 求矩阵列向量的最大线性最大无关组
对于矩阵 (1725230−11−1210640412−1)\begin{pmatrix} 1 & 7 & 2 & 5 & 2 \\ 3 & 0 & -1 & 1 & -1 \\ 2 & 1 & 0 & 6 & 4 \\ 0 & 4 & 1 & 2 & -1 \end{pmatrix} 132070142−10

最低0.47元/天 解锁文章
71

被折叠的 条评论
为什么被折叠?



