矩阵化为最简形--列向量的最大线性最大无关组--阶梯型矩阵--特征值和特征向量

1 将矩阵化为最简形

以下是将矩阵 (1725230−11−1210640412−1)\begin{pmatrix} 1 & 7 & 2 & 5 & 2 \\ 3 & 0 & -1 & 1 & -1 \\ 2 & 1 & 0 & 6 & 4 \\ 0 & 4 & 1 & 2 & -1 \end{pmatrix} 13207014210151622141 化为最简形的 Python 代码,并以矩阵形式展示结果:

from sympy import Matrix

# Define the matrix A
A = Matrix([
    [1, 7, 2, 5, 2],
    [3, 0, -1, 1, -1],
    [2, 1, 0, 6, 4],
    [0, 4, 1, 2, -1]
])

# Compute the reduced row echelon form (rref)
rref_matrix, pivot_columns = A.rref()

# Display the result
print("The matrix in reduced row echelon form is:")
print(rref_matrix)

运行此代码将输出:

The matrix in reduced row echelon form is:
Matrix([
[1, 0, 0, 0, 3/2],
[0, 1, 0, 0,  -2],
[0, 0, 1, 0,   6],
[0, 0, 0, 1, 1/2]])

化为最简形后的矩阵表示为:

(1000320100−200106000112) \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{3}{2} \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & \frac{1}{2} \end{pmatrix} 1000010000100001232621

2 求矩阵列向量的最大线性最大无关组

对于矩阵 (1725230−11−1210640412−1)\begin{pmatrix} 1 & 7 & 2 & 5 & 2 \\ 3 & 0 & -1 & 1 & -1 \\ 2 & 1 & 0 & 6 & 4 \\ 0 & 4 & 1 & 2 & -1 \end{pmatrix} 13207014210

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值