对傅里叶变换的分步理解

控制工程基础

数学

记录我对傅里叶变换的理解



前言

1.因为费曼学习法();
2.理解傅里叶分解很重要,特别是工程数学这块:
2.1 它是拉普拉斯变换Laplace的一种特殊情况,所以理解它对理解拉普拉斯变换Laplace很有用。
2.2 对信号处理很有用。原函数–>傅里叶变换–>分解信号 --> 过滤信号–>逆傅里叶变换。可以提取出想要的信号。


`

一、前置知识点

1.欧拉公式:

e i x = c o s x + i s i n x ; e^{ix}=cosx+isinx; eix=cosx+isinx;

二、分解理解傅里叶公式

1.理解欧拉公式在复平面的意义

y = e i x = c o s x + i s i n x ; y=e^{ix}=cosx+isinx; y=eix=cosx+isinx;
输入:x 表示当前的模为1的复平面中圆的弧长(走过的路径)。x取值范围为{-∞,+∞};
x 正数为逆时针;负数为顺时针;
输出:y表示复平面的当前点位

取值x=2,y的位置

2.描述在复平面每秒一个周期的运动函数

x:原本表示路径;x=2πt=wt;
t表示时间;w=2π(rad/s);速度为一圈每秒;
y表示复平面的当前点位;y不变;
即本函数为描述在w=2π(rad/s) 即一圈每秒时,经过t(s)时间,y在复平面所处的位置;
y = e i x = e i 2 π t y=e^{ix} =e^{i2 \pi t} y=eix=ei2πt
在这里插入图片描述

3.拓展成不同速度(频率)时的周期运动函数

令x=2πft;新加f为频率;
f表示单位为Hz 1s内的旋转次数
y = e i x = e i 2 π f t y=e^{ix} =e^{i2 \pi ft} y=eix=ei2πft
在这里插入图片描述

4.构建缠绕函数

设定x=−2πft ;实际意义y以f的频率沿着顺时针运转;
y ( t ) = e i x = e − 2 π i f t y(t)=e^{ix}=e^{-2 \pi ift} y(t)=eix=e2πift
乘上g(t)=cost 构建新的函数;
在这里插入图片描述
f ( t ) = g ( t ) y ( t ) = c o s t e − 2 π i f t f(t)=g(t)y(t)=coste^{-2 \pi ift} f(t)=g(t)y(t)=coste2πift
构建函数的理解:y(t)是一个顺时针运行函数,快慢可由f(常数)调节,同时模为1,g(t)缩放幅值,同时f调节的快慢也在拉伸g(t),也就是把g(t)缠绕起来。目前还是一个关于时间的描述运动轨迹的函数

5.取质心

为什么要取质心?
1.质心本身比较容易获取。积分除以取值域。

质心 m = 1 t 2 − t 1 ∫ t 1 t 2 c o s t e − 2 π i f t d t 质心m=\frac{1}{t2-t1}\int_{t1}^{t2} coste^{-2 \pi ift}dt 质心m=t2t11t1t2coste2πiftdt
理解:截取t1~t2 运动轨迹的积分 除以 时间差 为该段时间轨迹的“质心”;f为常数;
2. 在g(t)中存在频率分量和y(t) 中的f同频时会呈现明显的特征,m会明显变大;

取“质心”

6.傅里叶变换

使f为变量,只做积分。这时的m(f)就是函数g(t)的傅里叶变换:
m ( f ) = ∫ t 1 t 2 c o s t e − 2 π i f t d t m(f)=\int_{t1}^{t2} coste^{-2 \pi ift}dt m(f)=t1t2coste2πiftdt
函数有两个特性:
1.积分时间越长,m(f)越大;
2.f不断变换(扫频),就能得到相应的信号频率分布。
在这里插入图片描述

也就是截取一段时间的数据,曲线表示当前数据中,纵轴–频率幅值(体现频率重复的次数)和横轴–频率f之间的关系;


参考资料

3Blue1Brown

  • 26
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值