视觉信息保真度VIF算法详细介绍

本文详细介绍了视觉信息保真度(VIF)算法,源自2005年的高引用论文,用于视频质量评估。VIF利用自然场景统计模型、图像失真和人类视觉系统的模型来衡量视频质量。在奈飞的VMAF工具中,VIF作为关键评估维度。文章阐述了GSM模型、畸变模型和HVS模型在VIF算法中的作用,并提供了C++实现的源码分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源

  • 算法核心思想来源该篇论文A VISUAL INFORMATION FIDELITY APPROACH TO VIDEO QUALITY ASSESSMENT;是2005年的一篇高引用文章; 是一种全参考的视频图像评价算法;
  • 在奈飞开源的视频质量评价工具vmaf中将其作为一个判断维度,具体关于vmaf介绍可以参考视频质量评价工具vmaf

原理

  • 视觉信息保真度指标它是一种基于自然场景统计模型NSS、图像失真、和人类视觉失真建模的新判断;该指标认为人眼看到的图像是图像通过HVS过滤出来的信息,HVS本身就是一个失真通道,即人类视觉失真通道,而失真图像只是比原始图像在经过HVS之前又多了一个图像失真通道,故可以使用信息论的知识将人眼提取的信息与从原始图像提取的信息进行比较,得出最终评测结果。
    原理框图如下:
    在这里插入图片描述
  • 原理流程:
步骤 说明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码流怪侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值