区间问题在笔试过程中会问,这里总结如下:
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
不重合:直接跳过
重合:更新新区间的范围以便包含所有重叠,而且最后处理的时候还需要删除原区间集中所有和新区间重叠的区间,然后插入新区间
思路:
对区间集中每个区间进行遍历
- 如果新区间的末尾小于当前区间的开头,则跳出循环
- 如果新区间的开头大于当前区间的末尾,不作处理
- 如果新区间和当前区间有重叠,则更新新区间的开头为两者最小值,新区间的末尾为两者最大值,重叠数加一
- 指针移向下一个区间
代码:/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
vector<Interval> insert(vector<Interval>& intervals, Interval newInterval) {
vector<Interval>res=intervals;
int i=0;
int overlap=0;
int len=intervals.size();
while(i<len){
if(newInterval.end<intervals[i].start)break;
else if(newInterval.start>intervals[i].end);
else{
newInterval.start=min(intervals[i].start,newInterval.start);
newInterval.end=max(intervals[i].end,newInterval.end);
overlap++;
}//重合
i++;
}
if(overlap>0){res.erase(res.begin()+i-overlap,res.begin()+i);}
res.insert(res.begin()+i-overlap,newInterval);
return res;
}
};
Given a collection of intervals, merge all overlapping intervals.
For example,
Given [1,3],[2,6],[8,10],[15,18]
,
return [1,6],[8,10],[15,18]
.
和上一题比较,首先之前那题明确了输入区间集是有序的,而这题没有,所有我们首先要做的就是给区间集排序,由于我们要排序的是个结构体,所以我们要定义自己的comparator,才能用sort来排序,我们以start的值从小到大来排序,排完序我们就可以开始合并了,首先把第一个区间存入结果中,然后从第二个开始遍历区间集。如果无重合,则直接存入,如果有重合,结果中最后一个区间的end值更新为结果中最后一个区间的end和当前end值之中的较大值,即类似上面的:
对区间集中每个区间进行遍历
- 如果结果集合最近的区间的末尾小于当前区间的开头,则存入结果
- 如果结果集合最近区间的开头大于当前区间的末尾,不作处理,这条不用判断,因为这里已经排序,且存入的结果肯定不满足而不像随机插入的区间。
- 如果新区间和当前区间有重叠,则更新新区间的开头为两者最小值,新区间的末尾为两者最大值,重叠数加一
- 指针移向下一个区间
代码:
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
static bool cmp1(const Interval &a,const Interval &b){
return (a.start<b.start);
}
vector<Interval> merge(vector<Interval>& intervals){
vector<Interval> res;
if(intervals.size()<1)return res;
sort(intervals.begin(),intervals.end(),cmp1);
res.push_back(intervals[0]);
for(int i=1;i<intervals.size();i++){
if(res.back().end>=intervals[i].start){
res.back().end=max(res.back().end,intervals[i].end);
}
else res.push_back(intervals[i]);
}
return res;
}
};
218. The Skyline Problem