目录
2. 密钥K控制的16轮运算(M0,K1~K16 -> M16)
一、DES简介
DES算法为密码体制中的对称密码体制,又被称为美国数据加密标准,是1972年美国IBM公司研制的对称密码体制加密算法。加密和解密使用相同的密钥。
明文按64位进行分组,密钥长64位,密钥事实上是56位参与DES运算(第8、16、24、32、40、48、56、64位是校验位, 使得每个密钥都有奇数个1),分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。
二、DES算法入参
- data:要加密数据/被解密的数据,8字节64位。不足64位补足64位。
- key:密钥,64位中56位参与DES运算(第8、16、24、32、40、48、56、64位是校验位, 使得每个密钥都有奇数个1)。
- mode:加密 or 解密。
三、DES加密算法步骤解析
加密步骤:
- 64位明文M
- —— 1.(IP置换)
- —— 2.(密钥K控制的16轮迭代运算)
- —— 3.(交换左右32位)
- —— 4.(IP-1逆置换)
- 64位密文M'
其中56位密钥K会被处理,最终输出16个48位子密钥参与到16轮迭代运算中。
// 明文M(16进制和2进制)64位
M = 0123456789ABCDEF
M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
// 密钥K(16进制和2进制)64位
K = 133457799BBCDFF1
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
// 去除校验位的密钥 56位
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
1. IP置换(M -> M0)
描述:64位明文M,经过IP置换获得M0。
IP置换表如下所示:
IP置换表 | |||||||
58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 |
59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |
这里的 IP 置换是将 64 bit 明文 M 的位重新排序,得到新的数据 M0。例如将 M 的 58 位放在第 1 位,将 M 的 50 位放在第 2 位,以此类推,M 的第 7 位 放到第 64 位 ,得到置换后的 M0。
M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
M0 = IP(M)
= 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010
2. 密钥K控制的16轮运算(M0,K1~K16 -> M16)
描述:轮运算的输入为M0、K1-K16;输出为M16。
- 第1轮运算,输入M0、K1,得到M1。
- 第2轮运算,输入M1、K2,得到M2。
- 第16轮运算,输入M15、K16,最终得到M16。
可以分为两步进行,先根据K计算子密钥K1~K16,再根据M0以及K1~K16,计算16轮运算结果M16。
2.1. 子密钥Kn的计算
描述:先将64位密钥去除8个奇偶校验位,得到实际使用的56位密钥K(56bit),再经过运算得到子密钥K1~K16(48bit)。
- 首先对K(56bit)进行PC-1置换,得到新K(56bit)。
- K(56bit)分为左右28bit C0和D0,分别进行循环左移运算得到C1和D1;之后将数据C1 D1合并,再进行PC-2置换,得到K1。
- 在C1和D1的基础上进行第二次循环左移运算,之后将数据合并,再进行PC-2置换,得到K2。
- 以此类推,得到 K16。
①:PC-1置换,内容详见2.1.1
②:循环左移表R(n),内容详见2.1.2
③:PC-2置换,内容详见2.1.3
——2.1.1 PC-1置换
PC-1置换表如下所示:
PC-1 | ||||||
57 | 49 | 41 | 33 | 25 | 17 | 9 |
1 | 58 | 50 | 42 | 34 | 26 | 18 |
10 | 2 | 59 | 51 | 43 | 35 | 27 |
19 | 11 | 3 | 60 | 52 | 44 | 36 |
63 | 55 | 47 | 39 | 31 | 23 | 15 |
7 | 62 | 54 | 46 | 38 | 30 | 22 |
14 | 6 | 61 | 53 | 45 | 37 | 29 |
21 | 13 | 5 | 28 | 20 | 12 | 4 |
PC-1置换也是位置换,将原K的57位放在第一位,将K的第4位放在最后一位。
密钥 64位
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
56位原密钥(去除校验位)
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
新密钥
PC-1(K) = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111
将新密钥分为左右两组
C0 = 1111000 0110011 0010101 0101111
D0 = 0101010 1011001 1001111 0001111
——2.1.2 循环左移运算
循环左移表R(n)如下所示,n表示第几次循环左移,循环左移是会将左移后的数字补在末尾。
循环左移表 | ||||||||||||||||
轮数 n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
位数 R(n) | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
可以看出第一轮循环左移1位(补在末尾),即C1=C0<<1,第二轮C2=C1<<1,以此类推
C0 = 1111000011001100101010101111
C1 = C0<<1 = 1110000110011001010101011111
C2 = C1<<1 = 1100001100110010101010111111
C3 = C2<<2 = 0000110011001010101011111111
得到 C0-C16,D0-D16
C0 = 1111000011001100101010101111
D0 = 0101010101100110011110001111
C1 = 1110000110011001010101011111
D1 = 1010101011001100111100011110
C2 = 1100001100110010101010111111
D2 = 0101010110011001111000111101
C3 = 0000110011001010101011111111
D3 = 0101011001100111100011110101
C4 = 0011001100101010101111111100
D4 = 0101100110011110001111010101
C5 = 1100110010101010111111110000
D5 = 0110011001111000111101010101
C6 = 0011001010101011111111000011
D6 = 1001100111100011110101010101
C7 = 1100101010101111111100001100
D7 = 0110011110001111010101010110
C8 = 0010101010111111110000110011
D8 = 1001111000111101010101011001
C9 = 0101010101111111100001100110
D9 = 0011110001111010101010110011
C10 = 0101010111111110000110011001
D10 = 1111000111101010101011001100
C11 = 0101011111111000011001100101
D11 = 1100011110101010101100110011
C12 = 0101111111100001100110010101
D12 = 0001111010101010110011001111
C13 = 0111111110000110011001010101
D13 = 0111101010101011001100111100
C14 = 1111111000011001100101010101
D14 = 1110101010101100110011110001
C15 = 1111100001100110010101010111
D15 = 1010101010110011001111000111
C16 = 1111000011001100101010101111
D16 = 0101010101100110011110001111
——2.1.3 PC-2置换
PC-2置换表如下所示:
PC-2 | |||||
14 | 17 |