离散数学图论的练习题详解

学习技巧

  • 坚持
    在这里插入图片描述

图论练习

  1. 一颗树有2个2度结点,1个3度结点和3个4度结点,则1度结点数为()
    • 知识点:握手定理:所有节点度数之和等于边数的两倍
    • 解答: 2 × 2 + 1 × 3 + 3 × 4 + x = 2 ( 2 + 1 + 3 + x − 1 ) 2\times2+1\times3+3\times4+x=2(2+1+3+x-1) 2×2+1×3+3×4+x=2(2+1+3+x1)
    • 解得: x = 9 解得:x=9 解得:x=9
  2. n n n个结点 ( n ⩾ ) , m (n\geqslant),m (n)m条边的连通简单图是平面图的必要条件()
    • 知识点:欧拉公式推论
    • 解答:若简单连通平面图有𝒏(𝒏 ≥ 𝟑)个结点,𝒎条边,则:𝒎 ≤ 𝟑𝒏 − 6
    • 证明:平面图欧拉公式:𝒏 − 𝒎 + 𝒓 = 2 n : 结点数 m : 边数 r : 面数 n:结点数 m:边数 r:面数 n:结点数m:边数r:面数
      • 根据欧拉公式,可知平面图的面数𝒓为 r = m − n + 2 r=m-n+2 r=mn+2
      • 在简单图中,没有自环和重边,因而一个面至少要3条边围成。又由于所有面的次数之和等于边数的两倍,即 𝟐 𝒎 ≥ 𝟑 𝒓 ,解得 𝒓 ≤ 𝟐 𝟑 𝒎 。 𝟐𝒎 ≥ 𝟑𝒓,解得𝒓 ≤{𝟐\over𝟑}𝒎。 2m3r,解得r32m从而有 𝒎 − 𝒏 + 𝟐 ≤ 𝟐 𝟑 𝒎 𝒎 − 𝒏 + 𝟐 ≤{𝟐\over𝟑}𝒎 mn+232m,整理可得 𝒎 ≤ 𝟑 𝒏 − 𝟔 𝒎 ≤ 𝟑𝒏 − 𝟔 m3n6
    • 解得: m ⩽ 3 n − 6 m\leqslant3n-6 m3n6
  3. 在彼得森(Peterson)图中,至少添加几条边才能构成欧拉(Euler)图()
    在这里插入图片描述
    • 知识点:欧拉图的判定——图中所有结点的度数均为偶数
    • 解答: 由于在彼特森图中有10个节点的度数为奇数,因此要在彼特森图中添加5条边才能使其成为欧拉图.
    • 下图是为原图的一些边添加多重边,使其成为欧拉图的例子,其中虚线是添加的边。
      在这里插入图片描述
  4. 一棵树有7片树叶,3个3度结点,其余全是4度结点,则该树有()个4度结点。
    • 知识点:握手定理:所有节点度数之和等于边数的两倍
    • 解答: 7 + 3 × 3 + 4 × x = 2 ( 7 + 3 + x − 1 ) 7+3\times3+4\times x=2(7+3+x-1) 7+3×3+4×x=2(7+3+x1)
    • 解得: x = 1 x=1 x=1
  5. 五向图 G G G中有 16 16 16条边,且每个结点的度数均为2,则结点数是()
    • 知识点:握手定理:所有节点度数之和等于边数的两倍
    • 解答: 2 × x = 16 × 2 2\times x=16\times2 2×x=16×2
    • 解得: x = 16 x=16 x=16
  6. 有向图 D = V , E D={V,E} D=V,E,则 V 1 到 V 4 V_1到V_4 V1V4长度为2的通路有()条
    在这里插入图片描述
    • 知识点:图的通路
    • 解答:观察可知,只有 1 1 1 V 1 → V 3 → V 4 V_1\rightarrow V_3\rightarrow V_4 V1V3V4
    • 解得: 1 1 1
  7. 设无向图 G = < V , E > G=<V,E> G=<V,E>是连通的且 ∣ V ∣ = n , ∣ E ∣ = m |V|=n,|E|=m V=n,E=m,若()则G是一棵树。
    • 知识点:树的特点/定义:连通、无回路并且 n = m + 1 n=m+1 n=m+1
    • 解得: n = m + 1 n=m+1 n=m+1
  8. 无向图G是欧拉图的条件( )
    • 知识点:欧拉图的判定:G连通且所有结点的次数为偶数
    • 解答:G连通且所有结点的次数为偶数
  9. 无向树 T T T中有3个3度,2个2度顶点,其与顶点都是树叶, T T T有()片树叶。
    • 知识点:握手定理:所有节点度数之和等于边数的两倍
    • 解答: 3 × 3 + 2 × 2 + x = 2 ( 3 + 2 + x − 1 ) 3\times3+2\times2+x=2(3+2+x-1) 3×3+2×2+x=2(3+2+x1)
    • 解得: x = 5 x=5 x=5
  10. 在任何图中必定有偶数个()
    - 知识点:握手定理推论:任何图中必定有偶数个度数为奇数的结点
  11. 设G=<V,E>为无线简单图, △ ( G ) \bigtriangleup(G) (G)为图 G G G中结点的最大次数,求不等式()
    - 知识点:图层数的定义
    - 解答: △ ( G ) < n \bigtriangleup(G)<n (G)<n
  12. G G G是连通平面图, G G G中有6个顶点8条边,则 G G G的面的数目为()
    • 知识点:平面图欧拉公式:𝒏 − 𝒎 + 𝒓 = 2 n : 结点数 m : 边数 r : 面数 n:结点数 m:边数 r:面数 n:结点数m:边数r:面数
    • 解得: r = 4 r=4 r=4
    根数
    • 知识点:根树的定义
  13. n个结点的无向完全图 K n K_n Kn的边数为()
    • 知识点:无向完全图的边数个数 n ( n − 1 ) 2 n(n-1) \over 2 2n(n1)
  14. 连通非平凡的无向图G有一条欧拉回路当且仅当图G()
    • 知识点:欧拉回路的判定:图中没有奇度数结点
    • 解答:没有奇度数结点
  15. n n n阶图 G G G m m m条边,每个结点度数不是 k k k就是 k + 1 k+1 k+1,若 G G G中有 N k N_k Nk k k k度结点,则 N k = () N_k=() Nk=()
    • 知识点:握手定理:所有节点度数之和等于边数的两倍
    • 解答: N k + 1 和 N k 的度数差为 1 ,所以 N k + 2 m = n ( K + 1 ) N_{k+1}和N_{k}的度数差为1,所以N_k+2m=n(K+1) Nk+1Nk的度数差为1,所以Nk+2m=n(K+1)
  16. 可以构成无向简单图的度数序列为()
    - ( 2 , 2 , 2 , 2 , 2 ) (2,2,2,2,2) (2,2,2,2,2) (√)
    - ( 1 , 1 , 2 , 2 , 3 ) (1,1,2,2,3) (1,1,2,2,3)(×)
    - ( 1 , 1 , 2 , 2 , 2 ) (1,1,2,2,2) (1,1,2,2,2)(√)
    - ( 0 , 1 , 3 , 3 , 3 ) (0,1,3,3,3) (0,1,3,3,3)(×)
    - ( 1 , 3 , 4 , 4 , 5 ) (1,3,4,4,5) (1,3,4,4,5)(×)
  • 知识点:度数序列的图化问题
    • 奇度数节点的个数为偶数。
    • 0度节点可删除后讨论。
    • 简单无向图,则 n n n个节点最多有 n − 1 n-1 n1度,不可能存在 n n n度节点。
    • 如果有 2 2 2个及以上 n − 1 n-1 n1度节点就不可能由有 1 1 1度节点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值