计算机视觉应用可以分为:
1、图片识别(Image Classification)
2、目标 检测(Object Detection)
3、语义分割(Semantic Segmentation)
4、视频 理解(Video Understanding)
5、图片生成(Image Generation)
1、图片识别(Image Classification)
常见的分类问题,神经网络的输入为图片,输出为样本属于各个类别的概率,选取概率值最大的类别作为样本的预测类别。
经典的网络模型有 VGG 系列、Inception 系列、ResNet 系列等。
2、目标检测(Object Detection)
通过算法自动检测出图片中常见物体的大致位置,通常用边界框(Bounding box)表示,并分类出边界框中物体的类别信息。
常见的目标检测算法有CNN,Fast RCNN,Faster RCNN,Mask RCNN,SSD,YOLO 系列等。
3、语义分割(Semantic Segmentation)
通过算法自动分割并识别出图片中的内容,可以将语义分割理解为每个像素点的分类问题,分析每个像素点属于物体的类别。
常见的语义分割模型有 FCN,U-net,SegNet,DeepLab 系列等。
4、视频理解(Video Understanding)
常见的视频理解任务有视频分类,行为检测,视频主体抽取等。
常用的模型有 C3D,TSN,DOVF,TS_LSTM等。
5、图片生成(Image Generation)
通过学习真实图片的分布,并从学习到的分布中采样而获得逼真度较高的生成图片。
目前主要的生成模型有 VAE 系列,GAN 系列等。