随着国家一系列食品安全政策的出台,厨房的安全卫生问题逐渐被人们重视。其中,工作人员是否佩戴厨师帽是很关键的一环。人们希望能通过一种方式实现自动化的检测,但目前市场上大部分“明厨亮灶系统”或“未佩戴厨师帽检测系统”都无法满足用户的真实场景需求。在实际使用的时候会出现大量的误报、漏报等问题。那到底在未佩戴厨师帽行为识别算法上到底有什么难点?该如何解决呢?
算法难点
目前,未佩戴厨师帽检测算法的核心问题为召回率与准确率不足,其难点主要分为以下两个方面。
难点一:厨房场景复杂、空间受限、人体目标容易被遮挡
受到厨房空间、摄像头安装角度、人员密集等条件影响,人体目标被部分或严重遮挡以及厨师人员低头造成厨师帽特征信息丢失,只有少部分数据或者无数据可供神经网络学习。由于遮挡数据的多样性与复杂性,模型只能学习到厨师帽的局部特征,容易造成过拟合,从而引发漏报或误报问题。
如上图所示,由于遮挡问题造成无法看到人体目标,只有局部厨师帽特征信息在画面中,导致影响特征网络的特征提取,从而造成漏报。
难点二:摄