1. 安装好Anaconda后请确保以下几个路径已经添加到Window系统环境变量的path中
C:\ProgramData\Anaconda3 //C:\ProgramData\Anaconda3是我安装Anaconda的路径
C:\ProgramData\Anaconda3\Scripts //Anaconda路径的Scripts子文件夹
C:\ProgramData\Anaconda3\Library\bin
2. 如下步骤,conda会帮你安装好所有相关软件包,本方法适合网速较快的朋友,如果网速较慢,建议直接用另一种方法3
C:\>conda create -n tensorflow
C:\>activate tensorflow
(tensorflow) C:\>python -m pip install --upgrade pip
Requirement already up-to-date: pip in c:\programdata\anaconda3\lib\site-packages
(tensorflow) C:\>anaconda search -t conda tensorflow
Using Anaconda API: https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:
Packages:
Name | Version | Package Types | Platforms
------------------------- | ------ | --------------- | ---------------
HCC/tensorflow | 1.0.0 | conda | linux-64
HCC/tensorflow-cpucompat | 1.0.0 | conda | linux-64
HCC/tensorflow-fma | 1.0.0 | conda | linux-64
SentientPrime/tensorflow | 0.6.0 | conda | osx-64
: TensorFlow helps the tensors flow
SmartAg/tensorflow_gpu | 1.0.1 | conda | linux-aarch64
acellera/tensorflow-cuda | 0.12.1 | conda | linux-64
anaconda/tensorflow | 1.2.1 | conda | linux-ppc64le, linux-64, osx-64, win-64
: TensorFlow is a machine learning library
anaconda/tensorflow-gpu | 1.2.1 | conda | linux-ppc64le, linux-64, win-64
: TensorFlow is a machine learning library
conda-forge/r-tensorflow | 0.7 | conda | linux-64, osx-64, win-64
conda-forge/tensorflow | 1.2.1 | conda | linux-64, win-64, osx-64
: TensorFlow helps the tensors flow
creditx/tensorflow | 0.9.0 | conda | linux-64
: TensorFlow helps the tensors flow
derickl/tensorflow | 1.2.1 | conda | osx-64
: TensorFlow helps the tensors flow
dhirschfeld/tensorflow | 1.2.0 | conda | win-64
: Computation using data flow graphs for scalable machine learning
dseuss/tensorflow | | conda | osx-64
guyanhua/tensorflow | 1.0.0 | conda | linux-64
ijstokes/tensorflow | 2017.03.03.1349 | conda, ipynb | linux-64
intel/tensorflow | 1.2.1 | pypi, conda | linux-64
jjh_cio_testing/tensorflow | 1.2.0 | conda | linux-64
: TensorFlow is a machine learning library
jjh_cio_testing/tensorflow-gpu | 1.2.1 | conda | linux-64
: TensorFlow is a machine learning library
jjh_ppc64le/tensorflow | 1.2.1 | conda | linux-ppc64le
: TensorFlow is a machine learning library
jjh_ppc64le/tensorflow-gpu | 1.2.1 | conda | linux-ppc64le
: TensorFlow is a machine learning library
jjhelmus/tensorflow | 0.12.0rc0 | conda, pypi | linux-64, osx-64
: TensorFlow helps the tensors flow
jjhelmus/tensorflow-gpu | 1.0.1 | conda | linux-64
kevin-keraudren/tensorflow | 0.9.0 | conda | linux-64
marta-sd/tensorflow | 1.2.0 | conda | linux-64
marta-sd/tensorflow-gpu | 1.2.0 | conda | linux-64
memex/tensorflow | 0.5.0 | conda | linux-64, osx-64
: TensorFlow helps the tensors flow
mhworth/tensorflow | 0.7.1 | conda | osx-64
: TensorFlow helps the tensors flow
miovision/tensorflow | 0.10.0.gpu | conda | linux-64, osx-64
msarahan/tensorflow | 1.0.0rc2 | conda | linux-64
mutirri/tensorflow | 0.10.0rc0 | conda | linux-64
mwojcikowski/tensorflow | 1.0.1 | conda | linux-64
nehaljwani/tensorflow | 1.2.1 | conda | osx-64, win-64
: TensorFlow is a machine learning library
nehaljwani/tensorflow-gpu | 1.1.0 | conda | win-64
: TensorFlow is a machine learning library
r/r-tensorflow | 0.8.2 | conda | linux-64, win-32, win-64, linux-32, osx-64
: Interface to TensorFlow
rdonnelly/tensorflow | 0.9.0 | conda | linux-64
rdonnellyr/r-tensorflow | 0.4.0 | conda | linux-64
test_org_002/tensorflow | 0.10.0rc0 | conda |
thomasantony/tensorflow_gpu | 1.0.1 | conda | linux-aarch64
Found 39 packages
(tensorflow) C:\>anaconda show anaconda/tensorflow-gpu
Using Anaconda API: https://api.anaconda.org
Name: tensorflow-gpu
Summary: TensorFlow is a machine learning library
Access: public
Package Types: conda
Versions:
+ 1.0.1
+ 1.1.0
+ 1.2.1
To install this package with conda run:
conda install --channel https://conda.anaconda.org/anaconda tensorflow-gpu
//选择安装最新GPU版本,你也可以选择安装CPU版, 国内连接这个网站比较慢,也可以用清华大学镜像网站
/*
//可以配置清华大学镜像网址
(tensorflow) C:\>conda config --addchannels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
(tensorflow) C:\>conda config --setshow_channel_urls yes
(tensorflow) C:\>conda install --channel hhttps://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ tensorflow-gpu
//
*/
//用anaconda主机下载,可能比较慢
(tensorflow) C:\>conda install --channel https://conda.anaconda.org/anaconda tensorflow-gpu
Fetching package metadata .............
Solving package specifications: .
The following NEW packages will be INSTALLED:
cudatoolkit: 8.0-1 anaconda
cudnn: 6.0-0 anaconda
libprotobuf: 3.2.0-vc14_0 anaconda [vc14]
mkl: 2017.0.3-0 anaconda
numpy: 1.12.1-py36_0 anaconda
pip: 9.0.1-py36_1 anaconda
protobuf: 3.2.0-py36_0 anaconda
python: 3.6.2-0 anaconda
setuptools: 27.2.0-py36_1 anaconda
six: 1.10.0-py36_0 anaconda
tensorflow-gpu: 1.1.0-np112py36_0 anaconda
vs2015_runtime: 14.0.25420-0 anaconda
werkzeug: 0.12.2-py36_0 anaconda
wheel: 0.29.0-py36_0 anaconda
zlib: 1.2.11-vc14_0 anaconda [vc14]
Proceed ([y]/n)? y
等待.................................
另一种方法:
3 安装CPU版本请跳过3.1 3.2 3.3
下载 3.1 3.2
3.1
CUDA® Toolkit 8.0. For details, see NVIDIA's documentation
3.2 需要用邮箱注册成Nvdia开发者下载,最好用国外邮箱,国内有些邮箱可能收不到激活邮件。
注意现在tensorflow还不支持最新的cuDNN7.0, 一定要下载cuDNN V6.0 for cuda8.0
cuDNN v6 or v6.1. For details, see NVIDIA's documentation
3.3
安装完3.1后,确认cuda toolkit的路径已经在系统环境变量path中,不在请手动添加 toolkit的安装路径 如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0到系统环境变量
将3.2文件解压后的三个文件夹拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0
3.4
cmd指令窗口运行
C:\>conda create -n tensorflow
C:\>activate tensorflow
//安装CPU版本用这个指令
(tensorflow) C:\>pip install --ignore-installed --upgrade tensorflow
//如果安装GPU版本用这个指令
(tensorflow) C:\pip install --ignore-installed --upgrade tensorflow-gpu
4 确认tensorflow正确安装
C:\>python
输入如下代码
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
当看到如下打印,即正确安装了
b'Hello, TensorFlow!'
>>>
No module pip* 解决方法
(tensorflow) C:\WINDOWS\system32>python -m ensurepip
(tensorflow) C:\WINDOWS\system32>easy_install pip==18.1