对于大多数的项目而言,推荐系统都不可避免地面临以下几个问题
1.数据过度松散,当应用变得庞大,数据集开始增大的时候,就会出现这个问题了。可能大量的用户只是评价了一小部分的项目,而大多数的项 目是没有进行评分的。 这个时候就会出现数据过度松散的问题。
2.同义项目问题,对于同义的项目,在系统中可能具有不同的标识符,对于这些项目之间的相关性就会被忽略。
3.垃圾攻击,对于一些利用系统进行恶意传播的用户,可能会制造一些虚假的评价,造成系统推荐的不正确行为。
4.冷启动问题,对于新使用系统的用户,系统中并没有相关的操作记录,没法生成相关的推荐。
相关文献
XiaoYuan Su , Taghi M.Khoshgoftaar.A Survey of Collaborative Filtering Techiniques ,