欧拉函数


欧拉函数

欧拉函数φ(n):

(定义)欧拉函数:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) 。

(通项):φ(x) = x(1 - 1/p1)(1 - 1/p2)(1 - 1/p3)(1 - 1/p4)…..(1 - 1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只用一次。比如12=2*2*3,那么φ(12)= 12*(1-1/2)*(1-1/3)=4。

证明通项公式:因为对任意正整数k都可以唯一表示成:k=p1^a1*p2^a2*……*pi^ai;(即分解质因数形式)
可以推出:φ(k)=(p1-1)*(p2-1)*……*(pi-1)*(p1^(a1-1))*(p2^(a2-1))*……*(pi^(ai-1))
               =k*(p1-1)*(p2-1)……(pi-1)/(p1*p2*……*pi)
               =k*(1-1/p1)*(1-1/p2)*....*(1-1/pk)


完全余数集合:

定义小于 n 且和 n 互质的数构成的集合为 Zn ,称这个集合为 n 的完全余数集合。 显然 |Zn| =φ(n) 。


性质:

1、对于素数 p ,有φ(p) = p -1 。

2、对于两个不同的素数 p,q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1)  。
这是因为 Zn = {1, 2, 3,  ... , n - 1} - {p, 2p, ... , (q - 1) * p} - {q, 2q, ... , (p - 1) * q} , 则 φ(n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1)  =φ(p) * φ(q) 。

3、当n为奇数时,φ(2n)=φ(n)。

4、设a为N的质因数

      若(N%a==0 && (N/a)%a==0) ,则有:φ(N)=φ(N/a)*a;
      若(N%a==0 && (N/a)%a!=0) ,则有:φ(N)=φ(N/a)*(a-1);

5、一个数n的所有质因子之和为φ(n)*n/2。


欧拉定理 :
对于互质的正整数 a 和 n ,有 a^φ(n)  ≡ 1 mod n  。
证明:
( 1 ) 令 Zn = {x1, x2, ..., xφ(n)} , S = {a * x1 mod n, a * x2 mod n, ... , a * xφ(n) mod n} ,
        则 Zn = S 。
        ① 因为 a 与 n 互质, xi (1 ≤ i ≤ φ(n)) 与 n 互质, 所以 a * xi  与 n 互质,所以 a * xi  mod n ∈ Zn 。
        ② 若 i ≠ j , 那么 xi ≠ xj,且由 a, n互质可得 a * xi mod n ≠ a * xj mod n (消去律)。
( 2 )     a^φ(n) * x1 * x2 *... * xφ(n) mod n 
      ≡ (a * x1) * (a * x2) * ... * (a * xφ(n)) mod n
      ≡ (a * x1 mod n) * (a * x2 mod n) * ... * (a * xφ(n) mod n) mod n
      ≡  x1 * x2 * ... * xφ(n) mod n
      对比等式的左右两端,因为 xi  (1 ≤ i ≤ φ(n)) 与 n 互质,所以 a^φ(n)  ≡  1 mod n (消去律)。
(注:消去律:如果 gcd(c,p) = 1 ,则 ac ≡ bc mod p ⇒ a ≡ b mod p。)


费马定理 :
若正整数 a 与素数 p 互质,则有 a^(p - 1)  ≡  1 mod p 。
证明这个定理非常简单,由于 φ(p) = p -1,代入欧拉定理即可证明。

欧拉函数公式:
( 1 ) p^k 的欧拉函数:
对于给定的一个素数 p ,有φ(p) = p -1。则对于正整数 n = p^k ,有φ(n) = p^k - p^(k -1)
证明:小于 p^k 的正整数个数为 p^(k - 1)个,其中和 p^k 不互质的正整数有{p * 1,p * 2,...,p * (p^(k - 1)-1)} 共计 p^(k - 1) - 1 个,所以 φ(n) = p^k - 1 - (p^(k - 1) - 1) = p^k - p^(k - 1) 。


( 2 ) p * q 的欧拉函数
假设 p, q是两个互质的正整数,则 p * q 的欧拉函数为φ(p * q) = φ(p) * φ(q) , gcd(p, q) = 1 。
证明:令 n = p * q , gcd(p,q) = 1
 根据中国余数定理,有Zn 和 Zp × Zq 之间存在一一映射(a ∈ Zp , b ∈ Zq ⇔ b * p + a * q ∈ Zn )。

所以 n 的完全余数集合的元素个数等于集合 Zp × Zq 的元素个数。而后者的元素个数为 φ(p) * φ(q) ,

所以有φ(p * q) = φ(p) * φ(q) 。




欧拉函数代码实现:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#include <limits.h>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-6)
#define inf (1<<28)
#define sqr(x) (x) * (x)
#define mod 1000000007
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
//欧拉函数:打表
const long long MAX=1000000;
long long e[MAX];
long long euler()
{
    long long i,j;
    e[1]=1;
    for(i=2;i<MAX;i++)
        e[i]=i;
    for(i=2;i<MAX;i++)
    {
        if(e[i]==i)
        {
            for(j=i;j<MAX;j+=i)
            {
                e[j]=e[j]/i*(i-1);
            }
        }
    }
}

//欧拉函数:直接求
long long euler(long long n)
{
    long long i,res=n;
    for(i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            res=res/i*(i-1);
            while(n%i==0)
                n=n/i;
        }
    }
    if(n>1)
        res=res/n*(n-1);
    return res;
}

int main()
{
    long long i,j,k;
    freopen("data.txt","w",stdout);
    euler();
    for(i=1;i<10000;i++)
    {
        j=e[i];
        k=euler(i);
        printf("%I64d/%I64d\n",j,k);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值