codeforces Line 7C (拓展欧几里德+思想 模板) 好题

C. Line

Description

A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are integer numbers from  - 5·1018 to 5·1018 inclusive, or to find out that such points do not exist.

Input

The first line contains three integers AB and C ( - 2·109 ≤ A, B, C ≤ 2·109) — corresponding coefficients of the line equation. It is guaranteed that A2 + B2 > 0.

Output

If the required point exists, output its coordinates, otherwise output -1.

Sample Input

Input
2 5 3
Output
6 -3

 

//

题目大意:

给方程Ax + By + C = 0.  其中A,B,C为已知, 求x,y。


分析与总结:

拓展欧几里得算法的模板题。这个算法在数论书或者网上都可以找到。

该算法求出线性方程Ax + By = gcd(A, B); 

然后,这个方程可进行转换:

       Ax + By = gcd(A, B)

=>  Ax + By = -C/z, 其中-C/z = gcd(A, B)

=>  Ax*z + By*z = C.

其中x, y可以通过拓展欧几里得算法求出,

然后,我们只需要求出z, 而z = -C/gcd(A,B);

所以, 最终答案x = x*(-C/gcd(A,B)) ,  y = y*(-C/gcd(A,B));

 

//具体算法解释看:http://blog.csdn.net/zhjchengfeng5/article/details/7786595

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define ll long long
#define INF 5*1e18
using namespace std;
void gcd(ll a,ll b,ll& d,ll& x,ll& y)
{
	if(!b)
	{
		d=a;
		x=1;
		y=0;
	}
	else
	{
		gcd(b,a%b,d,y,x);
		y-=x*(a/b);
	}
}
int main()
{
	ll a,b,c,d,x,y;
	while(scanf("%lld%lld%lld",&a,&b,&c)!=EOF)
	{
		gcd(a,b,d,x,y);
		if(c%d!=0)
			printf("-1\n");
		else
			printf("%lld %lld\n",-x*(c/d),-y*(c/d));
	}
	return 0;
}

//标准模板


 

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define ll long long
#define INF 5*1e18
using namespace std;
ll gcd(ll a,ll b,ll& x,ll& y)
{
	if(!b)
	{
		x=1;
		y=0;
		return a;
	}	
		ll ans=gcd(b,a%b,x,y);
		int temp=x;
		x=y;
		y=temp-a/b*y;
		return ans;
}
int main()
{
	ll a,b,c,d,x,y;
	while(scanf("%lld%lld%lld",&a,&b,&c)!=EOF)
	{
		d=gcd(a,b,x,y);
		if(c%d!=0)
			printf("-1\n");
		else
			printf("%lld %lld\n",-x*(c/d),-y*(c/d));
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值