Time Limit: 1000MS | Memory Limit: 65535KB | 64bit IO Format: %lld & %llu |
Description
有一天人诹Lee
在随手帮女神做题,突然女神发现了自己演算纸上的一个式子,但是式子只有两个加数却没有结果,最近在学不同进制加减法的女神忘了这个两个数字是多少进制了(只记得是小于等于
10),但是她很好奇在可能的多少进制下这个式子得到的答案长度最长,为了从人赢Lee
手中抢走女神,你需要快速计算出这个答案,例如
?
78+87=? 在
10进制下是
165,在
9进制下是
176,而小于等于
8的进制显然是不合法的,所以这个式子答案可能的最长长度就是
3.
Input
第一行读入一个整数 T(1≤T≤100000) 表示数据组数
接下来有 T行
每行含两个数 A,B (不超过 4位的非 0整数)
Output
对于每个数据输出一个数字,表示可能的答案的最大长度
Sample Input
2
78 87
1 1
Sample Output
3
2
//进制越小,位数肯定越多,所以只用找到给定的两个数中最大的那个数m,那么它们的进制即为m+1,求出在(m+1)进制下的位数即为所求。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#define INF 0x3f3f3f3f
#define IN __int64
#define ull unsigned long long
#define ll long long
#define N 10010
#define M 1000000007
using namespace std;
int a[110];
int b[110];
int main()
{
int i,j,k;
int t,n,m;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
scanf("%d%d",&n,&m);
int nm=n+m;
int mm=0;
int kk;
i=0;
while(n)
{
k=n%10;
a[i++]=k;
n/=10;
mm=max(k,mm);
}
j=0;
while(m)
{
k=m%10;
b[j++]=k;
m/=10;
mm=max(k,mm);
}
kk=max(i,j);
for(i=0;i<kk;i++)
{
if(a[i]+b[i]>mm)
a[i+1]++;
}
if(a[kk])
printf("%d\n",kk+1);
else
printf("%d\n",kk);
}
return 0;
}