Time Limit: 2000MS | Memory Limit: 262144KB | 64bit IO Format: %I64d & %I64u |
Description
For a sequence a of n integers between 1 and m, inclusive, denote f(a) as the number of distinct subsequences of a (including the empty subsequence).
You are given two positive integers n and m. Let S be the set of all sequences of length n consisting of numbers from 1 to m. Compute the sum f(a) over all a in S modulo109 + 7.
Input
The only line contains two integers n and m (1 ≤ n, m ≤ 106) — the number of elements in arrays and the upper bound for elements.
Output
Print the only integer c — the desired sum modulo 109 + 7.
Sample Input
1 3
6
2 2
14
3 3
174
Source
考虑dp
dp[i][j]表示长度为i,以字符j结尾的答案是多少
dp[i][j]=sigma(dp[i-1][k]*2-dp[pre[j]-1][k])
然后这个玩意儿显然对于任意的j的都是一样的,而且pre[j]前面的每个位置都是可能的,这里的dp是个前缀和,所以直接扣除就可以了
那么直接化简为:dp[i]=dp[i-1]*(2m-1)
但是这个dp是没有考虑空串的
那么在加上空串就好了,所以答案就是
dp[i] = dp[i-1]*(2m-1)+m^(i-1)
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<algorithm>
#include<iostream>
#define INF 0x3f3f3f3f
#define ull unsigned long long
#define ll long long
#define IN __int64
#define N 2010
#define M 1000000007
using namespace std;
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
ll ans=2*m;
ll tmp=1;
for(int i=2;i<=n;i++)
{
tmp=tmp*m%M;
ans=(ans*(2*m-1)%M+tmp+M)%M;
}
printf("%lld\n",ans);
}
return 0;
}