分布式数据并行入门

分布式数据并行入门

先决条件:

DistributedDataParallel(DDP)在模块级别实现可在多台计算机上运行的数据并行性。 使用 DDP 的应用应产生多个进程,并为每个进程创建一个 DDP 实例。 DDP 在torch.distributed包中使用集体通信来同步梯度和缓冲区。 更具体地说,DDP 为model.parameters()给定的每个参数注册一个 Autograd 挂钩,当在后向传递中计算相应的梯度时,挂钩将触发。 然后,DDP 使用该信号触发跨进程的梯度同步。 有关更多详细信息,请参考 DDP 设计说明

推荐的使用 DDP 的方法是为每个模型副本生成一个进程,其中一个模型副本可以跨越多个设备。 DDP 进程可以放在同一台计算机上,也可以在多台计算机上,但是 GPU 设备不能在多个进程之间共享。 本教程从一个基本的 DDP 用例开始,然后演示了更高级的用例,包括检查点模型以及将 DDP 与模型并行结合。

注意

本教程中的代码在 8-GPU 服务器上运行,但可以轻松地推广到其他环境。

DataParallelDistributedDataParallel之间的比较

在深入探讨之前,让我们澄清一下为什么尽管增加了复杂性,但还是考虑使用DistributedDataParallel而不是DataParallel

  • 首先,DataParallel是单进程,多线程,并且只能在单台机器上运行,而DistributedDataParallel是多进程,并且适用于单机和多机训练。 即使在单台机器上,DataParallel通常也比DistributedDataParallel慢,这是因为跨线程的 GIL 争用,每次迭代复制的模型以及分散输入和收集输出所带来的额外开销。
  • 回顾先前的教程,如果模型太大而无法容纳在单个 GPU 上,则必须使用模型并行将其拆分到多个 GPU 中。 DistributedDataParallel模型并行一起使用; DataParallel目前没有。 当 DDP 与模型并行组合时,每个 DDP 进程将并行使用模型,而所有进程共同将并行使用数据。
  • 如果您的模型需要跨越多台机器,或者您的用例不适合数据并行性范式,请参阅 RPC API ,以获得更多通用的分布式训练支持。

基本用例

要创建 DDP 模块,请首先正确设置过程组。 更多细节可以在用 PyTorch 编写分布式应用中找到。

import os
import sys
import tempfile
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
import torch.multiprocessing as mp

from torch.nn.parallel import DistributedDataParallel as DDP

def setup(rank, world_size):
    if sys.platform == 'win32':
        # Distributed package only covers collective communications with Gloo
        # backend and FileStore on Windows platform. Set init_method parameter
        # in init_process_group to a local file.
        # Example init_method="file:///f:/libtmp/some_file"
        init_method="file:///{your local file path}"

        # initialize the process group
        dist.init_process_group(
            "gloo",
            init_method=init_method,
            rank=rank,
            world_size=world_size
        )
    else:
        os.environ['MASTER_ADDR'] = 'localhost'
        os.environ['MASTER_PORT'] = '12355'

        # initialize the process group
        dist.init_process_group("gloo", rank=rank, world_size=world_size)

def cleanup():
    dist.destroy_process_group()

现在,让我们创建一个玩具模块,将其与 DDP 封装在一起,并提供一些虚拟输入数据。 请注意,由于 DDP 会将模型状态从等级 0 进程广播到 DDP 构造器中的所有其他进程,因此您不必担心不同的 DDP 进程从不同的模型参数初始值开始。

class ToyModel(nn.Module):
    def __init__(self):
        super(ToyModel, self).__init__()
        self.net1 = nn.Linear(10, 10)
        self.relu = nn.ReLU()
        self.net2 = nn.Linear(10, 5)

    def forward(self, x):
        return self.net2(self.relu(self.net1(x)))

def demo_basic(rank, world_size):
    print(f"Running basic DDP example on rank {rank}.")
    setup(rank, world_size)

    # create model and move it to GPU with id rank
    model = ToyModel().to(rank)
    ddp_model = DDP(model, device_ids=[rank])

    loss_fn = nn.MSELoss()
    optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

    optimizer.zero_grad()
    outputs = ddp_model(torch.randn(20, 10))
    labels = torch.randn(20, 5).to(rank)
    loss_fn(outputs, labels).backward()
    optimizer.step()

    cleanup()

def run_demo(demo_fn, world_size):
    mp.spawn(demo_fn,
             args=(world_size,),
             nprocs=world_size,
             join=True)

如您所见,DDP 包装了较低级别的分布式通信详细信息,并提供了干净的 API,就好像它是本地模型一样。 梯度同步通信发生在反向传递过程中,并且与反向计算重叠。 当backward()返回时,param.grad已经包含同步梯度张量。 对于基本用例,DDP 仅需要几个 LoC 即可设置流程组。 在将 DDP 应用到更高级的用例时,需要注意一些警告。

带偏差的处理速度

在 DDP 中,构造器,正向传播和反向传递都是分布式同步点。 预期不同的进程将启动相同数量的同步,并以相同的顺序到达这些同步点,并在大致相同的时间进入每个同步点。 否则,快速流程可能会提早到达,并在等待流浪者时超时。 因此,用户负责平衡流程之间的工作负载分配。 有时,由于例如网络延迟,资源争夺,不可预测的工作量峰值,不可避免地会出现处理速度偏差。 为了避免在这种情况下超时,请在调用init_process_group时传递足够大的timeout值。

保存和加载检查点

在训练过程中通常使用torch.savetorch.load来检查点模块并从检查点中恢复。 有关更多详细信息,请参见保存和加载模型。 使用 DDP 时,一种优化方法是仅在一个进程中保存模型,然后将其加载到所有进程中,从而减少写开销。 这是正确的,因为所有过程都从相同的参数开始,并且梯度在反向传播中同步,因此优化程序应将参数设置为相同的值。 如果使用此优化,请确保在保存完成之前不要启动所有进程。 此外,在加载模块时,您需要提供适当的map_location参数,以防止进程进入其他设备。 如果缺少map_location,则torch.load将首先将模块加载到 CPU,然后将每个参数复制到保存位置,这将导致同一台机器上的所有进程使用相同的设备集。 有关更高级的故障恢复和弹性支持,请参考这里

def demo_checkpoint(rank, world_size):
    print(f"Running DDP checkpoint example on rank {rank}.")
    setup(rank, world_size)

    model = ToyModel().to(rank)
    ddp_model = DDP(model, device_ids=[rank])

    loss_fn = nn.MSELoss()
    optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

    CHECKPOINT_PATH = tempfile.gettempdir() + "/model.checkpoint"
    if rank == 0:
        # All processes should see same parameters as they all start from same
        # random parameters and gradients are synchronized in backward passes.
        # Therefore, saving it in one process is sufficient.
        torch.save(ddp_model.state_dict(), CHECKPOINT_PATH)

    # Use a barrier() to make sure that process 1 loads the model after process
    # 0 saves it.
    dist.barrier()
    # configure map_location properly
    map_location = {'cuda:%d' % 0: 'cuda:%d' % rank}
    ddp_model.load_state_dict(
        torch.load(CHECKPOINT_PATH, map_location=map_location))

    optimizer.zero_grad()
    outputs = ddp_model(torch.randn(20, 10))
    labels = torch.randn(20, 5).to(rank)
    loss_fn = nn.MSELoss()
    loss_fn(outputs, labels).backward()
    optimizer.step()

    # Not necessary to use a dist.barrier() to guard the file deletion below
    # as the AllReduce ops in the backward pass of DDP already served as
    # a synchronization.

    if rank == 0:
        os.remove(CHECKPOINT_PATH)

    cleanup()

将 DDP 与模型并行性结合起来

DDP 还可以与多 GPU 模型一起使用。 当训练具有大量数据的大型模型时,DDP 包装多 GPU 模型特别有用。

class ToyMpModel(nn.Module):
    def __init__(self, dev0, dev1):
        super(ToyMpModel, self).__init__()
        self.dev0 = dev0
        self.dev1 = dev1
        self.net1 = torch.nn.Linear(10, 10).to(dev0)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 5).to(dev1)

    def forward(self, x):
        x = x.to(self.dev0)
        x = self.relu(self.net1(x))
        x = x.to(self.dev1)
        return self.net2(x)

将多 GPU 模型传递给 DDP 时,不得设置device_idsoutput_device。 输入和输出数据将通过应用或模型forward()方法放置在适当的设备中。

def demo_model_parallel(rank, world_size):
    print(f"Running DDP with model parallel example on rank {rank}.")
    setup(rank, world_size)

    # setup mp_model and devices for this process
    dev0 = rank * 2
    dev1 = rank * 2 + 1
    mp_model = ToyMpModel(dev0, dev1)
    ddp_mp_model = DDP(mp_model)

    loss_fn = nn.MSELoss()
    optimizer = optim.SGD(ddp_mp_model.parameters(), lr=0.001)

    optimizer.zero_grad()
    # outputs will be on dev1
    outputs = ddp_mp_model(torch.randn(20, 10))
    labels = torch.randn(20, 5).to(dev1)
    loss_fn(outputs, labels).backward()
    optimizer.step()

    cleanup()

if __name__ == "__main__":
    n_gpus = torch.cuda.device_count()
    if n_gpus < 8:
      print(f"Requires at least 8 GPUs to run, but got {n_gpus}.")
    else:
      run_demo(demo_basic, 8)
      run_demo(demo_checkpoint, 8)
      run_demo(demo_model_parallel, 4)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
手把手视频详细讲解项目开发全过程,需要的小伙伴自行百度网盘下载,链接见附件,永久有效。 课程简介 知识点介绍、代码演示、逻辑分析、灵活举例、使用图形的方式详细演示代码的流程和细节、整合企业级实战案例,全面讲解并突出重点,让学习也变成一种快乐。 课程亮点 1,知识体系完备,阶段学习者都能学有所获。 2,综合各种方式演示代码、分析逻辑,生动形象,化繁为简,讲解通俗易懂。 3,结合工作实践及分析应用,培养解决实际问题的能力。 4,使用综合案例来加强重点知识,用切实的应用场景提升编程能力,充分巩固各个知识点的应用。 5,整个课程的讲解思路是先提出问题,然后分析问题,并编程解决解题。 适用人群 1、对大数据感兴趣的在校生及应届毕业生。 2、对目前职业有进一步提升要求,希望从事大数据行业高薪工作的在职人员。 3、对大数据行业感兴趣的相关人员。 课程内容 第一章、Spark 基础环境 1.课程安排说明 2.Spark 框架概述 3.快速入门 4.Standalone集群及HA 5.Spark 应用开发入门 6.Spark 应用提交 7.Spark on YARN 8.应用部署模式DeployMode 第二章、SparkCore 模块 1.RDD 概念及特性 2.RDD 创建 3.RDD 函数及使用 4.RDD 持久化 5.案例:SogouQ日志分析 6.RDD Checkpoint 7.外部数据源(HBase和MySQL) 8.广播变量和累加器 9.Spark 内核调度 10.Spark 并行度 第三章、SparkSQL 模块 1.快速入门:词频统计 2.SparkSQL 概述 3.DataFrame 4.RDD与DataFrame转换 5.数据分析SQL和DSL 6.案例:电影评分数据分析 7.DataSet 8.外部数据源Exeternal DataSource 9.集成Hive 10.自定义函数UDF 11.分布式SQL引擎(spakr-sql和Spark ThriftServer) 12.Catalyst 优化器 第四章、离线综合实战 1.综合实战概述(需求、调研、业务) 2.环境搭建(大数据环境和应用开发环境) 3.项目初始化(工具类和属性文件) 4.广告数据ETL 5.Spark 分布式缓存 6.业务报表分析 7.应用执行部署 8.Oozie和Hue集成调度Spark 应用 第五章、SparkStreaming 模块 1.Streaming流式应用概述 2.Streaming 计算模式 3.SparkStreaming计算思路 4.入门案例 5.SparkStreaming工作原理 6.DStream及函数 7.集成Kafka 8.案例:百度搜索风云榜(实时ELT、窗口Window和状态State) 9.SparkStreaming Checkpoint 10.消费Kafka偏移量管理 第六章、StructuredStreaming模块 1.StructuredStreaming 概述(核心设计和编程模型) 2.入门案例:WordCount 3.输入源InputSources 4.Streaming Query 设置 5.输出终端OutputSink 6.集成Kafka(Source和Sink) 7.案例:物联网设备数据分析 8.事件时间窗口分析 9.Streaming Deduplication数据去重 10.Continues Processing连续流处理 第七章、实时综合实战 1.综合实战概述(需求、环境搭建和项目初始化) 2.模拟交易订单数据 3.数据实时ETL存储Kafka 4.实时应用停止 5.实时增量存储(存储HBase和Elasticsearch) 6.实时订单报表(Kafka-StructuredStreaming-Redis) 7.实时应用性能调优(数据本地性、反压机制、动态资源和日志管理)
目录 译者序 审、译者简介 前言 第1章 决策支持系统的发展 1 1.1 演化 1 1.2 直接存取存储设备的产生 2 1.3 个人计算机/第四代编程语言技术 3 1.4 进入抽取程序 3 1.5 蜘蛛网 4 1.6 自然演化体系结构的问题 5 1.6.1 数据缺乏可信性 5 1.6.2 生产率问题 8 1.6.3 从数据到信息 10 1.6.4 方法的变迁 11 1.7 体系结构设计环境 12 1.7.1 体系结构设计环境的层次 13 1.7.2 集成 14 1.8 用户是谁 15 1.9 开发生命周期 15 1.10 硬件利用模式 16 1.11 建立重建工程的舞台 16 1.12 监控数据仓库环境 17 1.13 小结 19 第2章 数据仓库环境 20 2.1 数据仓库的结构 22 2.2 面向主题 23 2.3 第1天到第n天的现象 26 2.4 粒度 28 2.4.1 粒度的一个例子 29 2.4.2 粒度的双重级别 31 2.5 分割问题 34 2.6 样本数据库 34 2.7 数据分割 35 2.8 数据仓库中的数据组织 37 2.9 数据仓库—标准手册 41 2.10 审计和数据仓库 41 2.11 成本合理性 41 2.12 清理仓库数据 42 2.13 报表和体系结构设计环境 42 2.14 机遇性的操作型窗口 43 2.15 小结 44 第3章 设计数据仓库 45 3.1 从操作型数据开始 45 3.2 数据/过程模型和体系结构设计环境 49 3.3 数据仓库和数据模型 50 3.3.1 数据模型 52 3.3.2 中间层数据模型 54 3.3.3 物理数据模型 58 3.4 数据模型和反复开发 59 3.5 规范化/反规范化 60 3.6 数据仓库中的快照 65 3.7 元数据 66 3.8 数据仓库中的管理参照表 66 3.9 数据周期 67 3.10 转换和集成的复杂性 70 3.11 触发数据仓库记录 71 3.11.1 事件 72 3.11.2 快照的构成 72 3.11.3 一些例子 72 3.12 简要记录 73 3.13 管理大量数据 74 3.14 创建多个简要记录 75 3.15 从数据仓库环境到操作型环境 75 3.16 正常处理 75 3.17 数据仓库数据的直接访问 76 3.18 数据仓库数据的间接访问 76 3.18.1 航空公司的佣金计算系统 76 3.18.2 零售个性化系统 78 3.18.3 信用审核 80 3.19 数据仓库数据的间接利用 82 3.20 星型连接 83 3.21 小结 86 第4章 数据仓库中的粒度 87 4.1 粗略估算 87 4.2 粒度划分过程的输入 88 4.3 双重或单一的粒度? 88 4.4 确定粒度的级别 89 4.5 一些反馈循环技巧 90 4.6 粒度的级别—以银行环境为例 90 4.7 小结 95 第5章 数据仓库和技术 96 5.1 管理大量数据 96 5.2 管理多介质 97 5.3 索引/监视数据 97 5.4 多种技术的接口 97 5.5 程序员/设计者对数据存放位置的控制 98 5.6 数据并行存储/管理 99 5.7 元数据管理 99 5.8 语言接口 99 5.9 数据的高效装入 99 5.10 高效索引的利用 100 5.11 数据压缩 101 5.12 复合键码 101 5.13 变长数据 101 5.14 加锁管理 102 5.15 单独索引处理 102 5.16 快速恢复 102 5.17 其他的技术特征 102 5.18 DBMS类型和数据仓库 102 5.19 改变DBMS技术 104 5.20 多维DBMS和数据仓库 104 5.21 双重粒度级 109 5.22 数据仓库环境中的元数据 109 5.23 上下文和内容 111 5.24 上下文信息的三种类型 111 5.25 捕获和管理上下文信息 113 5.26 刷新数据仓库 113 5.27 小结 114 第6章 分布式数据仓库 116 6.1 引言 116 6.2 局部数据仓库 118 6.3 全局数据仓库 119 6.4 互斥数据 121 6.5 冗余 123 6.6 全局数据存取 124 6.7 分布式

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yanglamei1962

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值