- 博客(19)
- 收藏
- 关注
原创 Pytorch中实例化模型和调用模型时传的参数
在PyTorch中,这个机制是通过__call__方法实现的。当你调用一个nn.Module的实例时,实际上是调用了它的__call__方法,而这个方法会自动调用你在子类中定义的forward方法。这个模型是用的是outputs = model(images, traditional_features),此时传入的参数是forward里的参数。这个模型时用的是model = FusionIQAModel(num_outputs=1),此时传入的参数是__init__方法中的参数,而我在。
2024-05-27 23:41:18 416 1
原创 布尔掩码的应用
掌握如何使用布尔掩码和高级索引是提高Python编程效率和编写更简洁代码的关键。以下是一些提示帮助你掌握这种思想:掩码通常用于索引、赋值、以及函数应用等多种场景。这是一种强大的特性,允许你对数组进行条件选择和操作。
2024-03-15 16:14:47 351
原创 总结各种神经网络的用处
总结各种神经网络的用处深度神经网络DNN卷积神经网络CNN生成对抗网络GAN循环神经网络RNN深度神经网络DNN深度神经网络是深度学习的基础,也是最普通的神经网络模型,由一层输入层,多层隐藏层,一层输出层构成,一般用于普通的数据预测。参考链接:https://zhuanlan.zhihu.com/p/29815081卷积神经网络CNN卷积神经网络是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,可以应用于 语音识别 、图像处理和图像识别等领域。参考链接:https://z
2021-11-28 15:00:58 6982 1
原创 随机梯度下降简易版
import numpy as npimport matplotlib.pyplot as plta=0.01LEN = 100X = np.arange(0, LEN)# rand从-5到+5np.random.seed(1)rand = (np.random.random(LEN) * 2 - 1) * 5Y = X * 3 + rand# X、Y分布如下图所示# X、Y 连接X = X.reshape(LEN, 1)Y = Y.reshape(LEN, 1)all
2021-11-12 11:07:30 571
原创 c++实现鼠标连点器
#include<bits/stdc++.h>#include<windows.h>using namespace std;int main(){ double n=0; printf("按“F2”执行,按“F4”停止,按“ESC”退出") ; printf("\n默认0.05秒点击一次,最快0.001秒\n"); printf("请输入点击间隔时长:"); cin>>n; n=n*1000; if(n==0) { n=50;} wh
2021-11-08 15:10:50 1659 2
原创 Opencv——数据扩增
今日做yolov5项目时发现数据集中存在部分特征图片比较少,而yolov5内置的数据增强又比较单调,所以用程序对数据进行一步扩增,使一张变成六张注:文件名称会从1001开始计数,这里可以修改cnt变量改变,该程序仅为一个基础版,所以只扩增图片,不扩增相应的标签文件,如果有需要会再写相应的标签扩增程序(短期内应该是不会写了,看需求吧)。import osimport randomimport numpy as npimport cv2folder_path = ' ' #想要扩增的图片路径
2021-11-04 22:05:07 502
原创 通过极简方案构建手写数字识别模型_2
通过极简方案构建手写数字识别模型在房价预测深度学习任务中,我们使用了单层且没有非线性变换的模型,取得了理想的预测效果。在手写数字识别中,我们依然使用这个模型预测输入的图形数字值。其中,模型的输入为784维(28×28)数据,输出为1维数据,如 图6 所示。输入像素的位置排布信息对理解图像内容非常重要(如将原始尺寸为28×28图像的像素按照7×112的尺寸排布,那么其中的数字将不可识别),因此网络的输入设计为28×28的尺寸,而不是1×784,以便于模型能够正确处理像素之间的空间信息。说明:事实上,
2021-10-20 09:19:32 712
原创 通过极简方案构建手写数字识别模型_1
import paddlefrom paddle.nn import Linearimport paddle.nn.functional as Fimport osimport numpy as npimport matplotlib.pyplot as plttrain_dataset = paddle.vision.datasets.MNIST(mode='train')train_data0 = np.array(train_dataset[0][0])train_label_0 =
2021-10-20 00:08:39 980
原创 主成分分析练习(PCA)
主成分分析练习(PCA)原始数据:程序:import numpy as npdef pca(data): row = np.size(data, 0) #行 col = np.size(data, 1) #列 avg = np.zeros([1, col]) for i in range(col): avg[0, i] = np.mean(data[:, i]) for i in range(col): data[:, i]
2021-10-07 22:10:08 414
原创 python改进欧拉法
原式:改进欧拉法公式:单纯的比着公式打程序,与欧拉法进行对比,发现改进欧拉法的精度高了不少import numpy as npfrom matplotlib import pyplot as pltdef f(x,y): return y-2*x/yh=0.1x=[x/10 for x in range(0,11)]n=np.size(x)y=np.zeros([1,20])t=np.zeros([1,n])y[0,0]=1for i in range(n):
2021-09-24 09:52:28 3593 3
原创 np.pad()函数进行padding操作
import numpy as npA= np.arange(95,99).reshape(2,2)Aarray([[95, 96], [97, 98]])np.pad(A,((3,2),(2,3)),'constant',constant_values=(0,0))array([[ 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0,
2021-09-03 23:57:17 489
原创 np.hstack()和np.vstack()用于堆叠矩阵
import numpy as npx=np.array([[3,4,5],[1,3,4]])y=np.array([[1,1,1],[2,2,2]])np.hstack((x,y))array([[3, 4, 5, 1, 1, 1], [1, 3, 4, 2, 2, 2]])np.vstack((x,y))array([[3, 4, 5], [1, 3, 4], [1, 1, 1], [2, 2, 2]])
2021-09-03 23:56:14 189
原创 梯度下降法拟合曲线
import randomimport numpy as npx=[[2104,3],[1600,3],[2400,3],[1416,2],[3000,4]]t=[400,330,369,232,540]n=len(x)c=[]h=[]ti=[]y=[]e=[]alpha=0.01for i in range(3): c.append(random.random())for i in range(5): x[i].append(1)for i in range(
2021-09-03 23:55:45 797
原创 如何用pycharm将.ui文件转换为.py文件(内含出错解决方法)
1.打开pycharm,接着点击File→Setting→Tools→External Tools,点击红圈处的加号添加外部工具。2.为了方便辨认,就将名字起名为PyUIC(名字起什么都可以);program选择python.exe;Arguments输入-m PyQt5.uic.pyuic FileNameFileNameFileName -oFileNameWithoutExtensionFileNameWithoutExtensionFileNameWithoutExtension .py
2020-11-13 16:07:57 18597 41
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人