【涨知识】2020-03-08

本文深入探讨了机器学习中最小二乘法与梯度下降法的区别,解析了它们在不同场景下的适用性。同时,文章还涵盖了奇异矩阵的概念,以及逻辑回归中的共线性问题解决方案,如PCA、岭回归和LASSO回归。此外,还讨论了K-means算法的优缺点,PCA的数学原理,数据倾斜现象,以及贝叶斯平滑的应用。
摘要由CSDN通过智能技术生成

标题最小二乘与梯度下降的区别

参考链接:(https://blog.csdn.net/zaishuiyifangxym/article/details/93787233?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task)
总的来说,在机器学习中,最小二乘法只适用于线性模型(这里一般指线性回归);而梯度下降适用性极强,一般而言,只要是凸函数,都可以通过梯度下降法得到全局最优值(对于非凸函数,能够得到局部最优解)。梯度下降法只要保证目标函数存在一阶连续偏导,就可以使用。

奇异矩阵

奇异矩阵是线性代数的概念,就是该矩阵的秩不是满秩。
首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵,若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。然后,再看此矩阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 如果A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。

逻辑回归共线性问题

pca, 逐步回归, 岭回归(l2正则),lasso回归(l1正则)
https://www.jianshu.com/p/ef1b27b8aee0?from=timeline

kmeans 优缺点

https://www.cnblogs.com/pinard/p/6164214.html

PCA 数学原理

http://blog.codinglabs.org/articles/pca-tutorial.html

数据倾斜

https://blog.csdn.net/chyeers/article/details/78320778?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

贝叶斯平滑

https://www.ruanyifeng.com/blog/2012/03/ranking_algorithm_bayesian_average.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值