机器学习实战(四)01-逻辑回归 (Peter Harrington著)

目录

 

一 前言

二 Logistic回归与梯度上升算法

1 Logistic回归

2 梯度上升算法

三 Python3实战

2 训练算法

四 总结


一 前言

本文从Logistic回归的原理开始讲起,补充了书上省略的数学推导。本文可能会略显枯燥,理论居多,Sklearn实战内容会放在下一篇文章。自己慢慢推导完公式,还是蛮开心的一件事。

二 Logistic回归与梯度上升算法

Logistic回归是众多分类算法中的一员。通常,Logistic回归用于二分类问题,例如预测明天是否会下雨。当然它也可以用于多分类问题,不过为了简单起见,本文暂先讨论二分类问题。首先,让我们来了解一下,什么是Logistic回归。

1 Logistic回归

假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作为回归,如下图所示:

                                            

Logistic回归一种二分类算法,它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型(Discriminative Model)。

所以要想了解Logistic回归,我们必须先看一看Sigmoid函数 ,我们也可以称它为Logistic函数。它的公式如下:  
                                         

                                         

                                         

整合成一个公式,就变成了如下公式:

                                

下面这张图片,为我们展示了Sigmoid函数的样子。

         

z是一个矩阵,θ是参数列向量(要求解的),x是样本列向量(给定的数据集)。θ^T表示θ的转置。g(z)函数实现了任意实数到[0,1]的映射,这样我们的数据集([x0,x1,…,xn]),不管是大于1或者小于0,都可以映射到[0,1]区间进行分类。hθ(x)给出了输出为1的概率。比如当hθ(x)=0.7,那么说明有70%的概率输出为1。输出为0的概率是输出为1的补集,也就是30%。

如果我们有合适的参数列向量θ([θ0,θ1,…θn]^T),以及样本列向量x([x0,x1,…,xn]),那么我们对样本x分类就可以通过上述公式计算出一个概率,如果这个概率大于0.5,我们就可以说样本是正样本,否则样本是负样本。

举个例子,对于"垃圾邮件判别问题",对于给定的邮件(样本),我们定义非垃圾邮件为正类,垃圾邮件为负类。我们通过计算出的概率值即可判定邮件是否是垃圾邮件。

那么问题来了!如何得到合适的参数向量θ?

根据sigmoid函数的特性,我们可以做出如下的假设:

                                                   

代价函数:

我们要介绍如何拟合逻辑回归模型的参数𝜃。具体来说,我要定义用来 拟合参数的优化目标或者叫代价函数,这便是监督学习问题中的逻辑回归模型的拟合问题。

                                 

对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上来说,我们 也可以对逻辑回归模型沿用这个定义,但是问题在于,当我们将    带入到这样定义了的代价函数中时,我们得到的代价函数将是一个非凸函数(non-convexfunction)。

                           

这意味着我们的代价函数有许多局部最小值,这将影响梯度下降算法寻找全局最小值。

线性回归的代价函数为 :

h𝜃(𝑥)与 𝐶𝑜𝑠𝑡(h𝜃(𝑥),𝑦)之间的关系如下图所示:

这样构建的𝐶𝑜𝑠𝑡(h𝜃(𝑥),𝑦)函数的特点是:当实际的 𝑦 = 1 且h𝜃(𝑥)也为 1 时误差为 0, 当 𝑦 = 1 但h𝜃(𝑥)不为 1 时误差随着h𝜃(𝑥)变小而变大;当实际的 𝑦 = 0 且h𝜃(𝑥)也为 0 时 代价为 0,当𝑦 = 0 但h𝜃(𝑥)不为 0 时误差随着 h𝜃(𝑥)的变大而变大。

将构建的 𝐶𝑜𝑠𝑡(h𝜃(𝑥),𝑦)简化如下

𝐶𝑜𝑠𝑡(h𝜃(𝑥),𝑦) = −𝑦 × 𝑙𝑜𝑔(h𝜃(𝑥)) − (1 − 𝑦) × 𝑙𝑜𝑔(1 − h𝜃(𝑥))

带入代价函数得到:

其中,m为样本的总数,y(i)表示第i个样本的类别,x(i)表示第i个样本,需要注意的是θ是多维向量,x(i)也是多维向量。

在得到这样一个代价函数以后,我们便可以用梯度下降算法来求得能使代价函数最小的参数了

怎么求解使J(θ)最小的θ值呢?因为是求最小值,所以我们需要使用梯度下降算法。如果面对的问题是求解使J(θ)最大的θ值,那么我们就需要使用梯度上升算法。面对我们这个问题,如果使J(θ) := -J(θ),那么问题就从求极小值转换成求极大值了,使用的算法就从梯度下降算法变成了梯度上升算法,它们的思想都是相同的,学会其一,就也会了另一个。本文使用梯度上升算法进行求解。
 

2 梯度上升算法

说了半天,梯度上升算法又是啥?J(θ)太复杂,我们先看个简单的求极大值的例子。一个看了就会想到高中生活的函数:

来吧,做高中题。这个函数的极值怎么求?显然这个函数开口向下,存在极大值,它的函数图像为:

求极值,先求函数的导数:

令导数为0,可求出x=2即取得函数f(x)的极大值。极大值等于f(2)=4

但是真实环境中的函数不会像上面这么简单,就算求出了函数的导数,也很难精确计算出函数的极值。此时我们就可以用迭代的方法来做。就像爬坡一样,一点一点逼近极值。这种寻找最佳拟合参数的方法,就是最优化算法。爬坡这个动作用数学公式表达即为:

其中,α为步长,也就是学习速率,控制更新的幅度。效果如下图所示:

比如从(0,0)开始,迭代路径就是1->2->3->4->…->n,直到求出的x为函数极大值的近似值,停止迭代。我们可以编写Python3代码,来实现这一过程:

# -*- coding:UTF-8 -*-
"""
函数说明:梯度上升算法测试函数

求函数f(x) = -x^2 + 4x的极大值

"""
def Gradient_Ascent_test():
    def f_prime(x_old):                                    #f(x)的导数
        return -2 * x_old + 4
    x_old = -1                                            #初始值,给一个小于x_new的值
    x_new = 0                                            #梯度上升算法初始值,即从(0,0)开始
    alpha = 0.01                                        #步长,也就是学习速率,控制更新的幅度
    presision = 0.00000001                                #精度,也就是更新阈值
    while abs(x_new - x_old) > presision:
        x_old = x_new
        x_new = x_old + alpha * f_prime(x_old)            #上面提到的公式
    print(x_new)                                        #打印最终求解的极值近似值

if __name__ == '__main__':
    Gradient_Ascent_test()

代码运行结果如下:

结果很显然,已经非常接近我们的真实极值2了。这一过程,就是梯度上升算法。那么同理,J(θ)这个函数的极值,也可以这么求解。公式可以这么写:

                                                                 

由上小节可知J(θ)为:

                                                           

 sigmoid函数为:

                                                 

那么,现在我只要求出J(θ)的偏导,就可以利用梯度上升算法,求解J(θ)的极大值了。

那么现在开始求解J(θ)对θ的偏导,求解如下(数学推导):

                                                    

其中:

                                                 

再由:

                                             

可得:

                                              

接下来,就剩下第三部分:

                                          

综上所述:

                                            

因此,梯度上升迭代公式为:

                                          

知道了,梯度上升迭代公式,我们就可以自己编写代码,计算最佳拟合参数了。

 

三 Python3实战

数据集已经为大家准备好,下载地址:https://github.com/Jack-Cherish/Machine-Learning/blob/master/Logistic/testSet.txt

这就是一个简单的数据集,没什么实际意义。让我们先从这个简单的数据集开始学习。先看下数据集有哪些数据:

                                                        

这个数据有两维特征,因此可以将数据在一个二维平面上展示出来。我们可以将第一列数据(X1)看作x轴上的值,第二列数据(X2)看作y轴上的值。而最后一列数据即为分类标签。根据标签的不同,对这些点进行分类。

那么,先让我们编写代码,看下数据集的分布情况

# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np

"""
函数说明:加载数据
Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
Author:
    yangshaojun
Modify:
    2020-02-01
"""


# 加载数据 特征变为3维 吴恩达通常令第一个特征为1 即w0
def loadDataSet():
    dataMat = []  # 此列表存储特征
    labelMat = []  # 此列表存标签
    fr = open('testSet.txt')  # 打开文件
    for line in fr.readlines():  # 逐行读取
        lineArr = line.strip().split('\t')  # 去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])  # 每个样本特征作为列表存储
        labelMat.append(int(lineArr[2]))  # 添加到标签列表中
    fr.close()  # 关闭文件
    return dataMat, labelMat  # 返回


"""
函数说明:绘制数据集
Parameters:
    无
Returns:
    无
Author:
    yangshaojun
Modify:
    2020-02-01
"""
def plotDataSet():
    dataMat, labelMat = loadDataSet()
    dataArr = np.array(dataMat)  # 转换成numpy的array数组
    n = np.shape(dataArr)[0]  # 数据样本的数目
    xcode1 = []; ycode1 = []  #正样本
    xcode2 = []; ycode2 = []  #负样本
    for i in range(n):        #根据数据集标签进行分类
        if int(labelMat[i]) == 1:
            xcode1.append(dataArr[i, 1]); ycode1.append(dataArr[i, 2]) #1为正样本
        else:
            xcode2.append(dataArr[i, 1]); ycode2.append(dataArr[i, 2]) #0为负样本
    fig = plt.figure()
    ax = fig.add_subplot(111) #添加subplot
    ax.scatter(xcode1, ycode1, s=20, c='red', marker='s', alpha=0.5) #绘制正样本
    ax.scatter(xcode2, ycode2, s=20, c='green', alpha=0.5) #绘制负样本
    plt.title('DataSet') #绘制title
    plt.xlabel('x')  #绘制label
    plt.ylabel('y')
    plt.show()  #显示

运行结果如下:

                           

从上图可以看出数据的分布情况。假设Sigmoid函数的输入记为z,那么z=w0x0 + w1x1 + w2x2,即可将数据分割开。其中,x0为全是1的向量,x1为数据集的第一列数据,x2为数据集的第二列数据。另z=0,则0=w0 + w1x1 + w2x2。横坐标为x1,纵坐标为x2。这个方程未知的参数为w0,w1,w2,也就是我们需要求的回归系数(最优参数)。

2 训练算法

在编写代码之前,让我们回顾下梯度上升迭代公式:

                                               

将上述公式矢量化:

                                              

根据矢量化的公式,编写代码如下:

# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np

"""
函数说明:加载数据
Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
Author:
    yangshaojun
Modify:
    2020-02-01
"""


# 加载数据 特征变为3维 吴恩达通常令第一个特征为1 即w0
def loadDataSet():
    dataMat = []  # 此列表存储特征
    labelMat = []  # 此列表存标签
    fr = open('testSet.txt')  # 打开文件
    for line in fr.readlines():  # 逐行读取
        lineArr = line.strip().split('\t')  # 去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])  # 每个样本特征作为列表存储
        labelMat.append(int(lineArr[2]))  # 添加到标签列表中
    fr.close()  # 关闭文件
    return dataMat, labelMat  # 返回


"""
函数说明:sigmoid函数
Parameters:
    inX - 数据
Returns:
    sigmoid函数
Author:
    yangshaojun     
"""
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))

"""
函数说明:梯度上升算法

Parameters:
    dataMatIn - 数据集
    classLabels - 数据标签
Returns:
    weights.getA() - 求得的权重数组(最优参数)
    [[ 4.12414349]
    [ 0.48007329]
    [-0.6168482 ]]
Author:
    yangshaojun
Modify:
    2020-02-01
"""
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)  # 列表转换成numpy的mat 100行3列
    labelMat = np.mat(classLabels).transpose() #转换成numpy的mat,并进行转置 100行1列
    m, n = np.shape(dataMatrix)  # 返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.001  #移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500  # 最大迭代次数
    weights = np.ones((n, 1))  # 创建一个3行1列的矩阵 矩阵元素为1
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)  #梯度上升矢量化公式
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()  # 将矩阵转换为数组,返回权重数组

if __name__ == '__main__':
    dataArr, labelMat = loadDataSet()
    weights = gradAscent(dataArr, labelMat)
    print(weights)

运行结果如图所示:

可以看出,我们已经求解出回归系数[w0,w1,w2]。

通过求解出的参数,我们就可以确定不同类别数据之间的分隔线,画出决策边界。

# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np

"""
函数说明:加载数据
Parameters:
    无
Returns:
    dataMat - 数据列表
    labelMat - 标签列表
Author:
    yangshaojun
Modify:
    2020-02-01
"""


# 加载数据 特征变为3维 吴恩达通常令第一个特征为1 即w0
def loadDataSet():
    dataMat = []  # 此列表存储特征
    labelMat = []  # 此列表存标签
    fr = open('testSet.txt')  # 打开文件
    for line in fr.readlines():  # 逐行读取
        lineArr = line.strip().split('\t')  # 去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])  # 每个样本特征作为列表存储
        labelMat.append(int(lineArr[2]))  # 添加到标签列表中
    fr.close()  # 关闭文件
    return dataMat, labelMat  # 返回


"""
函数说明:sigmoid函数
Parameters:
    inX - 数据
Returns:
    sigmoid函数
Author:
    yangshaojun     
"""
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))

"""
函数说明:梯度上升算法

Parameters:
    dataMatIn - 数据集
    classLabels - 数据标签
Returns:
    weights.getA() - 求得的权重数组(最优参数)
    [[ 4.12414349]
    [ 0.48007329]
    [-0.6168482 ]]
Author:
    yangshaojun
Modify:
    2020-02-01
"""
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)  # 列表转换成numpy的mat 100行3列
    labelMat = np.mat(classLabels).transpose() #转换成numpy的mat,并进行转置 100行1列
    m, n = np.shape(dataMatrix)  # 返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.001  #移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500  # 最大迭代次数
    weights = np.ones((n, 1))  # 创建一个3行1列的矩阵 矩阵元素为1
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)  #梯度上升矢量化公式
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()  # 将矩阵转换为数组,返回权重数组

"""
函数说明:绘制数据集

Parameters:
    weights - 权重参数数组
Returns:
    无
Author:
    yangshaojun
Modify:
    2020-02-01
"""

def plotBestFit(weights):
    dataMat, labelMat = loadDataSet()
    dataArr = np.array(dataMat)  #转换成numpy的array数组
    n = np.shape(dataArr)[0]  # 返回样本数
    xcode1 = []; ycode1 = []  #正样本
    xcode2 = []; ycode2 = []  #负样本
    for i in range(n):        #根据数据集标签进行分类
        if int(labelMat[i]) == 1:
            xcode1.append(dataArr[i, 1]);  ycode1.append(dataArr[i, 2]) #1为正样本
        else:
            xcode2.append(dataArr[i, 1]);  ycode2.append(dataArr[i, 2]) #0为负样本
    fig = plt.figure()
    ax = fig.add_subplot(111)                                           #添加subplot
    ax.scatter(xcode1, ycode1, s=30, c='red', marker='s')               #绘制正样本
    ax.scatter(xcode2, ycode2, s=30, c='green')                         #绘制负样本
    x = np.arange(-3.0, 3.0, 0.1)
    y = (-weights[0] - weights[1] * x) / weights[2]  # 这里的y的值即x2
    ax.plot(x, y)
    plt.xlabel('X1');
    plt.ylabel('X2');
    plt.show()

这个分类结果相当不错,从上图可以看出,只分错了几个点而已。但是,尽管例子简单切数据集很小,但是这个方法却需要大量的计算(300次乘法)。因此下篇文章将对改算法稍作改进,从而减少计算量,使其可以应用于大数据集上。

四 总结

Logistic回归的一般过程:

收集数据:采用任意方法收集数据。
准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
分析数据:采用任意方法对数据进行分析。
训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
测试算法:一旦训练步骤完成,分类将会很快。
使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数,就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。

其他:

Logistic回归的目的是寻找一个非线性函数Sigmoid的最佳拟合参数,求解过程可以由最优化算法完成。
本文讲述了Logistic回归原理以及数学推导过程。
下篇文章将讲解Logistic回归的改进以及Sklearn实战内容。 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值