MXNET笔记(三)Data Iterator

MXNet中的数据迭代器用于处理大规模数据,当内存不足以一次性加载所有数据时,通过分批送入数据进行学习。迭代器确保每次仅获取部分数据,并在后续迭代中继续提供后续数据。此外,文中提及了NDarray,它在numpy中以一维形式存储数据,通过不同的解读方式实现多维数组。还提到了Super,但未展开详细说明。
摘要由CSDN通过智能技术生成

Iterable

MXNET中读入数据需要使用到数据迭代器(Iter),用户可以使用MXNET提供的一些数据迭代器也可以自己写一个迭代器。虽然一般情况下,我们很多的数据都可以直接读入内存之中,但是面向神经网络进行大数据学习时,学习的样本往往达到了几个GB甚至几十上百个GB。这显然是我们的内存所不能承受的。这样的情况下,我们不得不分批次的将数据送入我们的学习网络之中。迭代器的目的就是在需要数据的时候得到部分数据,然后下次需要的时候能够继续获得后续数据。在网上发现这篇Blog对迭代的概念解释的非常好。

NDarray

numpy中的ndarray存储数据时采用的是一维的形式。二维或者多维数组在numpy中采用“别样”解读的方式来实现。比如,一个30元素可以看作5x6或者3x10

Super

关于super


  dataiter = mx.io.ImageRecordIter(
            #rec文件所在位置
            path_imgrec="MNIST.rec",
            #rec文件中图像大小以及通道数量
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值