【RS采样】A Gain-Tuning Dynamic Negative Sampler for Recommendation (WWW 2022)

本文介绍了针对推荐系统中负采样的改进方法,提出了一种增益调优动态负采样器。该方法通过监测期望增益的变化,有效地识别并避免假负样本,提高训练的稳定性和准确性。实验表明,这种方法能够提升推荐系统的性能,特别是在使用分组优化器的情况下,性能提升显著。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Simplify and Robustify Negative Sampling》 NIPS 2020

这篇文章实验观察到虽然False Negative和Hard Negative都会有较大的Socre,但是False Negative有更低的预测方差。所以提出一个Simplify and Robustify Negative Sampling方法,在训练epoch t t t 时,根据前5个epoch的训练记录,预测评分高、方差大的样本作为Hard Negative:

在这里插入图片描述

A Gain-Tuning Dynamic Negative Sampler for Recommendation (WWW 2022)

现有的挖掘RS难负样本的方法只想要挖掘训练过程梯度贡献大的样本(预测和标签差距大的),在RS场景中这样很容易导致选择假负样本(False Negative、missing data),从而导致过拟合训练数据集。

文章提出一个基于期望增益的采样器,在训练过程中根据正负样本之间差距的期望的变化,动态指导负采样,可以识别假负样本。

在这里插入图片描述

增益感知负采样器

衡量一个物品 j j j 是不是用户 u u u 的真实负样本的方法:
H t ( u , j ) = E i ∼ Δ u σ ( r u , j − r u , i ) \mathcal{H}^{t}(u, j)=\mathbb{E}_{i \sim \Delta_{u}} \sigma\left(r_{u, j}-r_{u, i}\right) Ht(u,j)=EiΔuσ(ru,jru,i)
公式计算的是期望, t t t是训练epoch, Δ u \Delta_{u} Δu 用户交互过的物品集合, σ \sigma

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值