【多模态】MoE解决多模态单双塔问题 VLMo: Unifified Vision-Language Pre-Training with Mixture-of-Modality-Experts

VLMo结合单双塔模型优势,采用Mixture-of-Modality-Experts(MoME)Transformer,处理多模态任务。通过模态专家分别处理视觉、语言和跨模态任务,适应检索和分类场景。预训练阶段包含图像文本对比学习、掩码语言建模和图像-文本匹配,逐步训练专家。微调阶段则根据任务类型选择单塔或双塔结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前在秋招和写毕业论文,一个月没更了。毕业论文交了,开更。

《VLMo: Unifified Vision-Language Pre-Training with Mixture-of-Modality-Experts》

多模态的单双塔困境

在多模态工作中存在两类主流方法,分别是双塔模型和单塔模型。

在这里插入图片描述

双塔模型以CLIP和ALIGN为代表,这类方法对文本和图像分别用一个编码器进行编码,然后计算两个模态的embedding的相似度。这类方法的优点是适合检索任务,可以检索大量的文本与图像,缺点是仅在塔顶的相似度loss交互信息有限,不足以处理复杂的VL分类任务。比如CLIP在视觉推理任务上的准确度较低。

img

单塔模型以ViLT为代表,这类模型的优点是可以充分地将多模态的信息融合,更擅长分类任务,这种模型架构天然不适合检索,因为没有显示的对齐操作,只能用 【CLS】 的输出匹配 or 不匹配。利用这种模型架构做检索任务,需要encode所有的文本-图像对,时间复杂度是 O ( N 2 ) O(N^2) O(N2) 的。

下图是ViLT的模型架构,有三个预训练任务,分别是图像文本匹配、MLM和单词-图像区域对齐(WPA)。

在这里插入图片描述

其中 Word Patch Alignment是 UNITER 这篇中提出的方法,WPA 是利用最优传输(OT)的形式完成的。

在这里插入图片描述

对比推荐的单双塔

这里可以联系推荐场景,召回模型通常是作用在 亿级别的,需要快速匹配,因此通常是双塔模型,用户和物品不存在特征交互,只在塔顶相遇进行相似度匹配。

精排阶段通常是作用在千级别,需要进行充分的特征交互挖掘,深度的特征交互有助于更准确的推荐,这个是推荐经典的理论。

在这里插入图片描述

所以可以帮助我们理解多模态里的单塔双塔困境。

VLMo——MoE解决单双塔问题

这篇文章希望融合这两个架构的优点,提出VLMo希望既可以作为双编码器(双塔)去做检索任务,也可以作为融合编码器(单塔)。VLMo利用了一个古老的模型结构 混合专家,VLMo的核心结构是 Mixture-of-Modality-Experts(MOME) Transformer,简而言之是将 Transformer中的FFN前馈网络替换成了针对不同任务的网络,称之为模态专家。每个专家拥有特定任务的知识,处理具体任务时切换到相应的专家。

下面来看具体方法。VLMo的整体结构和训练流程如下。左边是VLMo的结构,右边是按顺序的三个预训练任务。

在这里插入图片描述

Input Representations

图片和文本要变成embedding才能输入进VLMo。所以首先是如何生成embedding。

  • 图像表示:二维图像 v ∈ R H × W × C v \in \mathbb{R}^{H \times W \times C} vRH×W×C 分割成 N = H W / P 2 N=H W / P^2 N=HW/P2 个patch, v p ∈ R N × ( P 2 C ) v^p \in \mathbb{R}^{N \times\left(P^2 C\right)} vpRN×(P2C),C 是图片的通道数。将图片patch展开拉成向量,并通过线性变换的到patch embedding。还要再准备一个图片的【CLS】token。再加上一维position emb和type emb得到图像的最终输入:

V type  ∈ R D : H 0 v = [ v [ I 1  CLS  ] , V v i p , … , V v N p ] + V pos  + V type  \boldsymbol{V}_{\text {type }} \in \mathbb{R}^D: \boldsymbol{H}_0^v=\left[\boldsymbol{v}_{\left[I_1 \text { CLS }\right]}, \boldsymbol{V} \boldsymbol{v}_i^p, \ldots, \boldsymbol{V} \boldsymbol{v}_N^p\right]+\boldsymbol{V}_{\text {pos }}+\boldsymbol{V}_{\text {type }} Vtype RD:H0v=[v[I1 CLS ],Vvip,,V

<think>好的,我现在需要回答用户关于多模态大模型MLM的全称的问题。首先,用户提到的MLM,通常在不同上下文中有不同的含义,但在多模态大模型的背景下,可能需要仔细分析。 根据提供的引用资料,引用[3]中提到了Multiway Transformer和VLMo模型,其中提到预训练的目标函数是masked data modeling,也就是掩码数据建模。而MLM通常代表Masked Language Modeling,这在自然语言处理中是常见的预训练任务,例如BERT模型就使用MLM来训练。不过,在多模态的上下文中,可能扩展为多模态的掩码建模任务,比如同时处理图像和文本的掩码部分。 另外,引用[3]中提到VLMo模型中的Multiway Transformer结构,其中不同模态使用不同的前馈网络(FFN),但共享自注意力层。预训练的目标是masked data modeling,可能同时包括图像和文本的掩码恢复任务。因此,这里的MLM可能指的是“Masked Language and Vision Modeling”或者类似的变体,但具体到多模态大模型中的MLM全称,可能需要更准确的确认。 查看用户提供的引用内容,引用[3]明确提到预训练的目标函数是masked data modeling,可能同时处理图像和文本的掩码恢复。因此,在多模态大模型中的MLM可能指的是“Masked Language Modeling”或者更广义的“Multimodal Masked Modeling”。不过,更常见的缩写可能是M3(Multimodal Masked Modeling),但用户明确询问的是MLM的全称。 结合常规术语和多模态领域的扩展,MLM在多模态大模型中的全称可能是“Multimodal Language Modeling”或“Multimodal Masked Language Modeling”。然而,根据引用[3]中的描述,模型通过遮住不同模态的数据(如图像或文本)进行完形填空式的训练,这更接近于“Masked Multimodal Modeling”。不过,通常MLM在NLP中指Masked Language Modeling,扩展到多模态后,可能称为“Multimodal Masked Language Modeling”或者保持原名但涵盖多模态任务。 此外,引用[3]提到VLMo模型中的训练方法,这可能在多模态大模型中延续使用类似的术语。因此,综合考虑,MLM在这里的全称应为“Masked Language Modeling”,但需指出在多模态上下文中可能同时涵盖视觉和语言的掩码建模。不过,用户的问题明确询问的是多模态大模型中的MLM,因此可能需要更准确的术语。 再查看引用[2]提到的多模态指令精调中的训练目标,可能不直接涉及MLM。而引用[3]中的模型使用masked data modeling,这里可能将MLM扩展为多模态的掩码任务,如“Multimodal Masked Learning Model”或类似的名称,但不确定是否有标准术语。 可能的结论是,用户提到的MLM可能指的是在多模态大模型中的掩码建模任务,即“Multimodal Masked Modeling”或“Masked Multimodal Learning”。但根据常规缩写,MLM通常指Masked Language Modeling,而在多模态中可能扩展为包括视觉部分,因此全称可能为“Masked Language and Vision Modeling”或保持原名但应用于多模态场景。然而,需要确认是否有标准名称。 最终,根据引用[3]中提到的“masked data modeling”和“遮住了图像,有可能是遮住了文本”,可以推断MLM在此上下文中可能指的是“Multimodal Masked Modeling”,但更准确的全称可能需要结合具体模型。例如,VLMo模型中的MLM可能仍称为Masked Language Modeling,但应用于多模态数据时,可能称为Multimodal Masked Language Modeling。因此,用户问题的答案应为:多模态大模型中的MLM全称是“Masked Language Modeling”,但在多模态上下文中扩展为同时处理语言和视觉的掩码任务,具体可能称为“Multimodal Masked Language and Vision Modeling”或类似名称。不过,根据引用[3]的描述,可能更直接回答为“Masked Language Modeling”,并说明其在多模态中的应用。</think>多模态大模型中提到的 **MLM** 全称为 **Masked Language Modeling**(掩码语言建模)[^3],但在多模态场景下,其含义通常扩展为 **多模态掩码建模**(Multimodal Masked Modeling),涵盖对文本、图像等跨模态数据的掩码恢复任务。具体来说: 1. **核心概念** MLM 最初是自然语言处理中的预训练任务(如 BERT),通过随机遮盖部分文本并让模型预测被遮盖内容。在多模态大模型中(如 VLMo、VisualGLM 等),MLM 被扩展为同时对文本和图像进行掩码建模。例如: - 文本部分:遮盖词并预测恢复; - 图像部分:遮盖图像块或区域并重建像素或语义。 2. **技术实现** 多模态 MLM 通常通过 **Multiway Transformer** 结构实现: - 共享自注意力层,但针对不同模态(文本、图像)使用独立的 FFN(前馈网络); - 训练时随机遮盖不同模态的数据,模型需联合推理并完成跨模态恢复任务。 3. **应用与优化** MLM 是多模态大模型预训练的核心目标之一,结合 **多模态指令精调**(Multimodal Instruction Fine-tuning)[^2],可提升模型对复杂指令(如图文问答、多模态对话)的响应能力。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值