【推荐系统中的Hash 3】Deep Hash:Learning to Embed Categorical Features without Embedding Tables KDD‘21

三、深度哈希(id——embedding)

《Learning to Embed Categorical Features without Embedding Tables for Recommendation》Google KDD 2021 Research Track

文章以 NLP的视角切入推荐系统中embedding的问题:

  • NLP中存在分词的机制,所以词表大小远远小于推荐中纯ID类的词表;
  • NLP中的词表是静态的(因为词语是固定的),而推荐中词表需要经常更新(因为有新用户等进入);
  • 推荐中的高度偏移的数据分布,也就是如何处理长尾数据的embedding

文章提出Deep Hash Embeddings (DHE) 的方式来缓解以上问题,AUC相等的情况下模型参数量更少。

现有方法

One-hot full embedding

在这里插入图片描述

这种方式就是最常见的方法,即把所有类别特征进行编号,假设共 n 个特征。特征s 首先通过one-hot进行编码 E ( s ) = b = { 0 , 1 } n E(s)=b=\{0,1\}^n E(s)=b={ 0,1}n , 其中只有第 b s b_s bs 项为1,其他都为0。接着通过一个可学习的线性变换矩阵(说白了就是embedding table,可以看作一层神经网络,但没有bias项)得到对应的embedding表示: e = W T b e=W^Tb e=WTb

这种方法的缺点:1、embedding table随特征数量线性增长(即内存问题);2、无法处理新出现的特征(OOV)。

One-hot Hash Embedding

为了解决One-hot Full Embedding中的内存消耗巨大的问题,可以使用**「哈希函数」对类别特征进行「映射分桶」**,将原始的 n 维的 one-hot 特征编码映射为 m 维的 one-hot 特征编码(即m个桶, m < < n m<<n m<<n )。这样,embedding table只用存储m项,大大降低了参数量。

相比One-hot Full Embedding,编码部分变为: E ( s ) = b = { 0 , 1 } m

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值