剑指offer——连续子数组的最大值

剑指offer——连续子数组的最大值

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)

分析及答案

该题的子数组不一定从下标0开始。因此我的首次尝试错误,我嵌套了两个for循环,将从0到i的和保存在了一个新的数组中,然后遍历新的数组,找到最大值。该方法不通过。没想到更好的方法。

求助别人的答案,发现一个很好的解法:利用动态规划方法,保存中间计算结果。

public class Solution {
    public int FindGreatestSumOfSubArray(int[] array) {
        int len=array.length;
        if(len==0 || array==null){
            return 0;
        }
        int sum=array[0];//需要返回的和
        int temp=array[0];//保存的中间计算结果
        for(int i=1;i<len;i++){
            temp=(temp<0)?array[i]:(temp+array[i]);
            sum=(sum<temp)?temp:sum;
        }
        return sum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值