美赛BOOM数学建模4-2微分方程传染病预测模型

注明:本文根据数学建模BOOM网课简单整理,自用

指数传播模型与SI模型

❑从最简单的指数传播模型说起

❑ 传染病预测问题

• 不同类型传染病的发病机理和传播途径各有特点

• 有的传染病,在得过一次后可获得免疫力,但有的则不会

• 有的传染病具有潜伏期,有的则没有

• 需要对不同类型的传染病建立相应合适的预测模型

❑ 从最简单的看起:指数传播模型

1. 假设所研究的区域是封闭区域,在一定时期内人口总量不变,不考虑迁入和迁出

2. 在𝑡时刻患病人数𝑁(𝑡)是随时间连续变化的、可微的函数

3. 每个病人在单位时间内会传染到的人数为大于0的常数𝜆

❑ 本期课程重点:模型假设与模型改进的思想

❑指数传播模型

❑ 模型的建立

• 设𝑁(𝑡)为𝑡时刻患病人数,则𝑡 + Δ𝑡时刻的患病人数为𝑁(𝑡 + Δ𝑡)

• 则从𝑡 → 𝑡 + Δ𝑡时间内,净增的患病人数为𝑁 (t + Δ𝑡) − 𝑁(𝑡)

• 根据假设3(每个病人在单位时间内会传染到的人数为大于0的常数𝜆),有:

• 注意,𝜆在模型中始终是常数(每个病人在单位时间内会传染到的人数)

❑ 微分方程

• 基于上一页的第2条模型假设,在上面公式等号两边同时除以Δ𝑡,并令Δ𝑡 → 0

• 可得微分方程:

• 可求得该模型的解析解:

❑ 结果分析

• 模型结果显示,患病人数是指数型增长

• 该模型一般适用于传染病暴发初期

• 因为在初期,传染源和传染途径往往未知,难以防范

• 但是按照该模型, 𝑡 → ∞时𝑁(t)→ ∞,这显然是不符合实际的

❑ 模型改进

• 封闭区域内人数有限,当患病人数越来越多时,健康人群的数量也就越来越少

• 那么单位时间内新增的人数( 𝑁(t)的导数)也会减少,毕竟没多少人可以被感染了

• 基于以上分析,对模型进行改进,建立SI模型

❑SI模型

❑ 模型假设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值