矩阵小朋友,真是拿你没有办法

矩阵的概念
  • 由m*n个数按一定的次序排成的m行n列的矩阵数表称为m*n的矩阵,简称矩阵 A= (aij)m*n
几种特殊的矩阵
  • 方阵
    当m=n时,即矩阵的行数与列数相同时,称矩阵为方阵
    主对角线和斜对角线只有方阵才有
  • 零矩阵
    矩阵中的所有元素都为0记作Om*n,当矩阵为On*n称为n阶零方阵
  • 对角矩阵
    首先需要有对角,所以必须是方阵,然后除去对角线上的元素之外,其余元素都为零,记作 Λ
  • 单位矩阵
    对角线上的元素都为1,记作En(n为单位矩阵的阶数)
  • 数量矩阵
    对角线上的元素都是相同的数k
  • 三角阵
    三角阵可以分为上三角阵和下三角阵,且都在方阵的范畴之内,上三角阵是主对角线上(包括主对角线有元素),其余元素为0,下三角阵是主对角线下(包括主对角线有元素),其余元素为0
  • 梯形阵
    设A=(aij)m*n为非零矩阵,若非零行(至少有一个非零元素的行)全在零行上面,A中各非零行的第一个(最后一个)非零元素前(后)面的零元素的个数随着行数的增大而增大(减少),则称为上(下)梯形矩阵,简称为上(下)梯形阵
    前两个为上梯形阵,后两个为下梯形阵
矩阵的运算
  • 相等
    两个矩阵相等是指这两个矩阵有相同的行数和列数,且对应元素相等,即A=(aij)m*n=B=(bij)m*n,对应元素相等 aij = bij
  • 加减的运算规律
    设A = (aij)m*n,B = (bij)m*n
    A+B = (aij+bij)m*n
    A-B = (aij-bij)m*n
    A+B = B+A(加法交换律)
    A+(B+C) = (A+B)+C (加法结合律)
    A+O = A = O+A
    A-A = O
    -A = (-aij)m*n(负矩阵)
  • 数乘
    kA 矩阵中的每个元素都与k相乘
    k(A+B) = kA + kB(乘法分配律)
    (kl)A = k(lA)(乘法结合律)
    (k+l)A = kA + lA(乘法分配律)
  • 矩阵的乘法
    A=(aij)m*s,B=(Bij)s*m,满足矩阵的乘法,需要第一个矩阵的列数和第二个矩阵的行数相同,C=AB=(cij)m*n
    矩阵的乘法不满足交换律
    矩阵的乘法不满足消去律
    矩阵的乘法有非零的零因子(也就是说两个非零矩阵相乘可能得到一个零矩阵)
    1 (AB)C = A(BC)(乘法结合律)
    2 A(B+C) = AB+AC(乘法分配律)
    3 (B+C)A = BA+CA(乘法分配律)
    4 k(AB) = (kA)B = A(kB)
    5 EmAm*n=Am*n=Am*nEn
  • 方阵的正整数幂运算
    Ak= AA…A ; A0=E
    Ak+l=Ak+Al,但是(AB)k !=Ak+Bk,不相等原因如下
    在这里插入图片描述
    所以又得出(AB)k = Ak+Bk的前提条件是AB = BA
  • 矩阵的转置运算
    对角阵的转置还是对角阵本身
    (AT)T = A
    (A+B)T = AT+BT
    (kA)T=kAT
    (AB)T = BTAT,证明如下
    在这里插入图片描述
  • 对称阵和反对称阵
    如果一个矩阵,它的转置和它本身相等,我们就把这个矩阵叫做对称阵,对称阵有AT = A,也就是aij = aji ,例如 AAT,ATA,A+AT,都是对称阵
    反对称阵的话AT = -A ,有aij = -aji 且 aii = 0,例如 A-AT是反对称阵
    A = (A+AT)/2 + (A-T)/2 = A
    也就是说,任何一个方阵都可以分解成对称阵和反对称阵的和
方阵的行列式
  • 定义
    由方阵A所构成的 行列式 称为方阵的行列式,称为|A|或者det(A)
  • 非奇异方阵和奇异方阵
    若方阵的行列式不等于0,则方阵称为非奇异方阵,否则称为奇异方阵
  • 方阵行列式的性质
    除去一般行列式所包含的五点性质外,还有如下性质:
    设A,B为n阶方阵,k为常数,则有
    |kA| = KnA
    |AB| = |A||B|(如果不是同阶方阵不成立)
  • 奇数阶的反对称阵的行列式值为0
    -在这里插入图片描述
伴随矩阵

设矩阵A = (aij)m*n,Aij为aij的代数余子式,由Aij组成的元素位置与AT元素位置一一对应且与A同阶的矩阵叫做A的伴随矩阵,记作A*
在这里插入图片描述

  • 对于2阶级行列式求其伴随矩阵
    正对角线位置互换
    副对角线加负号
  • 对于多阶行列式来说有性质AA* = A*A = |A|E
    在这里插入图片描述
矩阵的初等变换
  • 对换矩阵中i,j两行(列)的位置,记作rij(cij)或ri <-> rj(ci <-> cj)
  • 用非零常数k乘以第i行(列),记作kri(kci)
  • 将矩阵的第j行(列)乘以常数k以后加到第i行(列)对应元素上去,记作ri + krj(ci+crj)
  • 利用有限次初等变换将矩阵从A变成B,之间的记号用 -> 或者≌ 连接,称为矩阵A等价于B,等价矩阵具有自反性,对称性,传递性
    在这里插入图片描述
  • 任何一个矩阵都有等价标准型
    在这里插入图片描述
矩阵的秩
  • k阶子式
    在Am*n中任取k行k列,取这些行列相交的K2个元素,按原次序组成的k阶行列式,称为矩阵A的k阶子式,一般的,m*n矩阵A的k阶子式有CnkCmk

  • 秩的定义
    矩阵A的所有不等于0的子式的最高阶数称为矩阵A的秩,记作r(A),

  • 秩的性质
    r(O) = 0,只要A不是0矩阵,就有r(A) > 0
    r(Am*n)= min{m,n}
    若有一个r阶子式不为零则r(A)>=r
    若所有的r阶子式都为零,r(A)<r,也就是最大秩为r-1
    r(AT) = r(A)
    设An*n,若|A| != 0,则r(A) = n ,若 |A| = 0,则r(A)<n

    任何一个矩阵都可以经过初等变换化为梯形阵,梯形阵中非零行的行数就是梯形阵的秩

  • 矩阵的秩是矩阵的一个重要的数字特征,显然,若两个矩阵有相同的秩,则这两个矩阵有相同的标准型,从而等价;反之,若两个矩阵等价,则他们的秩相同

  • 定理: 矩阵A和B等价的充要条件是r(A)=r(B)

  • 满秩矩阵
    若方阵A的秩与其阶数相等,则称A为满秩矩阵,否则称为降秩矩阵
    若A为满阶矩阵,则A的标准型为同阶单位阵E
    推论: A满秩; A等价于E;A非奇异;A = P1,P2,P3…Pn(Pi)为初等矩阵(这也可以说是一系列初等矩阵的变换)
    推论: 矩阵A与B等价的充要条件为存在m阶,及n阶满秩阵P,Q.使Bm*n = PmAm*nQn,由此还可以得到,若P,Q为满秩阵,则r(A) = r(PA) = r(PAQ) = r(AQ)

  • 满秩的是非奇异矩阵 降秩的是奇异矩阵

初等矩阵
  • 定义
    对单位阵进行一次初等变换后得到的矩阵称为初等矩阵
    在这里插入图片描述
  • 性质
    初等矩阵的转置仍然为同类型的初等矩阵
    |E(i,j)| = -1 E=1,交换两行 -1
    |E(i(k))| = k
    |E(i,k(j))| = 1
    初等矩阵都是非奇异的
    行变换相等于左乘初等矩阵,列变换相等于右乘初等矩阵
逆矩阵
  • 定义:
    若矩阵A != O,存在矩阵B,使得 AB = BA = E,那么就称B为A的逆矩阵,说矩阵A是可逆的
    逆阵是唯一的,记作A-1(A-1是一个整体的表示),证明:设 B,C都为A的逆,则B=EB=(CA)B=C(AB)=CE=C

  • 什么情况下方阵可逆
    方阵可以的充要条件是|A| != 0,也就是满秩

  • 逆阵的求解表达式
    A-1 = (1/|A|) A*

  • 逆矩阵的性质
    A可逆 => |A-1| = 1/|A|
    A可逆 => A-1 可逆,(A-1)-1 = A
    AB = E (or BA = E) => B = A-1
    (AT)-1 = (A-1)T
    (AB)-1 = B-1A-1
    (kA)-1 = (1/k)A-1 (k != 0 A可逆)

  • 逆阵的求法
    方法一 : 求 A*, A-1= (1/A)A*
    方法二: 初等变换法
    在这里插入图片描述 在这里插入图片描述
    方法三: 用定义求解
    通俗的讲,就是找个B使得AB 或者 BA = E
    在这里插入图片描述

分块矩阵
  • 定义:
    将矩阵用若干纵横直线分成若干个小块,每一小块称为矩阵的子块(或矩阵),以子块为矩阵形成的元素称为分块矩阵
  • 分块矩阵的运算:
    线性运算: 加法和乘法
    乘法运算: 符合乘法的要求(第一个矩阵的列数要等于第二个矩阵的行数)
    转秩运算: 大块小块一起转
    在这里插入图片描述
  • 几种特殊的分块矩阵
    准对角阵
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    分块三角阵
    在这里插入图片描述
逆阵的应用一求解矩阵方程
  • AX = B ,A可逆
    在这里插入图片描述
    当A化成E的时候,B就化成了X

  • AXC=B,A,C可逆
    在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值