线性代数 | (1) 矩阵Part One

目录

1. 矩阵是什么?

2. 几种特殊的矩阵

3. 矩阵的运算

4. 方阵的行列式

5. 伴随矩阵

6. 矩阵初等变换

7. 矩阵的秩

8. 初等矩阵


1. 矩阵是什么?

矩阵被认为是线性代数中最基础的内容, 也是研究线性代数其他内容的工具。

由m*n个数按一定的次序排成的m行n列的矩形数表称为m*n 的矩阵,简称矩阵:

横的各排称为矩阵的行,竖的各排称为矩阵的列.a_{ij}称为矩阵的第i行j列的元素.元素为实数的矩阵我们称为实矩阵,我们目前只讨论实矩阵。

矩阵通常用大写字母A、B、C等表示,如:

简记为A = (a_{ij})_{m*n}.

行矩阵:

列矩阵:

矩阵是翻译过来的词,英文是Matrix,这个翻译很 好。既形象又大气。阵这个词很容易让我们想到那种气势庞大的阵列。 让你感觉到那种重要和不可替代。

 

2. 几种特殊的矩阵

  • 方阵

当m=n时,即矩阵的行数与列数相同时, 称矩阵为方阵。

主对角线从左上到右下,元素的下标相同,即i=j. 注意只有方阵才有主对角线。

斜对角线从右上到左下,只有方阵才有斜对角线。

  • 零矩阵

  • 对角矩阵

对角矩阵首先得有对角线,所以必须是方阵。

其它没写出的元素都是零。

  • 单位阵

若对角线上的元素都是1,就得到又一个特殊的矩阵:

这个矩阵称作单位矩阵,记作E_{n}I_{n}

  • 数量矩阵

若对角线上的元素是相同的数k,得到的特殊矩阵为:

这个矩阵称作数量矩阵。

  • 三角阵

上三角矩阵:

下三角矩阵:

  • 梯形阵

A=(a_{ij})_{m*n}为非零矩阵,若非零行(即至少有一个非零元素的行)全在零行的上面, A中各非零行中第一个(最后一个)非零元素前(后)面零元素的个数随行数增大而增多(减少),则称为上(下)梯形矩阵。简称为上(下)梯形阵。

 

3. 矩阵的运算

线性运算:

  • 相等

两个矩阵相等是指这两个矩阵有相同 的行数与列数, 且对应元素相等.即:

  • 加、减法

 A = (a_{ij})_{mn},B = (b_{ij})_{mn}

矩阵加减必须是同型的,对应位置元素相加减:

运算规律:

负矩阵:

A=(a_{ij})_{mn}的负矩阵为(-a_{ij})_{mn},记作-A,即-A = (-a_{ij})_{mn}

  • 数乘

与数的乘法,简称为数乘。记作:kA

数k乘矩阵中的每一个元素。

运算规律:

  • 矩阵乘法

A=(a_{ij})_{m\times s},B=(b_{ij})_{s\times n},C = AB = (c_{ij})_{m \times n} (A的列数必须等于B的行数):

注意:

1)AB \neq BA,矩阵乘法不满足交换率.

2)AB = AC,B\neq C,不满足消去率;

3)有非零的零因子。

运算规律:

  • 练习

AB = E_{n} (对角阵相乘等价于直接对应位置元素相乘)。

其他运算:

  • 方阵的正整数幂

注意(AB)^k = A^kB^k成立的条件是AB=BA.

  • 矩阵的转置

行列互换。

运算规律:

  • 对称阵与反对称阵(方阵)

对称阵:

A^{T} = A,a_{ij}=a_{ji}

下面的几个矩阵都是对称阵:

反对称阵:

A^{T} = -A,a_{ij}=-a_{ji}a_{ii}=0

下面这个矩阵是反对称阵:

任一方阵都可以分解成 对称阵与反对称阵的和:

  • 练习

数学归纳法:

4. 方阵的行列式

由方阵A所构成的行列式称为方阵的行列式,记为|A|det A

若方阵的行列式不为零,则称方阵为 非奇异方阵,否则称为奇异方阵.

由方阵A所确定的行列式作为一种运算除具有一般的行列式的性质外,还有如下性质:

设A, B均为n阶方阵,k为常数,则有:

  • 练习

奇数阶反对称阵的行列式为零:

5. 伴随矩阵

写伴随矩阵A^{*}时,注意代数余子式的顺序。

主对角线元素互换,斜对角线元素取相反数。

6. 矩阵初等变换

以下三种变换分别称为矩阵的第一、第二、第三种初等变换:

矩阵的初等行变换与初等列变换统称为初等变换。

初等变换可以简化矩阵,如将矩阵化为梯形阵。

  • 矩阵等价

对矩阵A实行有限次初等变换得到矩阵B,则称矩 阵A与B等价,记作A \cong B.

等价矩阵具有自反性、对称性、传递性。即

7. 矩阵的秩

  • k阶子式

A_{m\times n}中任取k行k列,位于这些行列相交处的k^2个元素,按原次序组成的 k阶行列式,称为矩阵A的k阶子式.一般地,m*n矩阵A的k阶子式有C_{m}^{k}C_{n}^{k}个。

  • 矩阵的秩

矩阵 A 的所有不等于零的子式的最高阶 数称为矩阵 A 的秩。记作r(A).

显然:r(O)=0;只要A不是零矩阵, 就有 r(A)>0.并且:

任意一个矩阵都可经初等变换化为梯形阵.梯形阵的秩等于其非零行的行数.矩阵经初等变换后其秩不变.

原矩阵的秩就等于经初等变换后得到的梯形矩阵的秩,即梯形矩阵非零行的行数。

用初等变换求矩阵的秩:

  • 练习

将秩与行列式结合:

 

矩阵的秩是矩阵的一个重要的数字特征。

显然,若两个矩阵有相同的秩,则这两个矩阵有相同的标准形,从而等价;反之,若两个矩阵等价,则它们的秩相同。

矩阵A与B等价的充要条件是r(A)=r(B).

  • 满秩矩阵

若方阵A的秩与其阶数相等,则称A为满秩矩阵; 否则称为降秩矩阵。

设方阵A为满秩阵,则A的标准形为同阶单位阵 E .即:

若方阵A的行列式 |A| \neq 0,则称A为非奇异矩阵,A是满秩的,即r(A) = n; 若|A| = 0,则称为A为奇异矩阵,A是降秩的,即r(A) < n

 

8. 初等矩阵

对单位阵进行一次初等变换后得到的矩阵称为初等矩阵。

三种初等行变换得到的初等矩阵分别为:

1)互换第i、j行:

2)第i行乘以k:

3)第j行乘以k加到第i行:

对单位阵作一次列变换得到的矩阵也包括在上面的三类矩阵之中。

  • 初等矩阵的性质

1)初等矩阵的转置仍为同类型的初等矩阵.

2)初等矩阵都是非奇异的.

  • 初等矩阵和初等变换的关系

初等行变换相当于左乘初等矩阵; 初等列变换相当于右乘初等矩阵.

  • 满秩矩阵

若方阵A的秩与其阶数相等,则称A为满秩矩阵; 否则称为降秩矩阵。

设A为满秩阵,则A的标准形为同阶单位阵 E .即

以下命题等价:

矩阵A与B等价的充要条件为存在m阶及n阶满秩阵P、Q,使得A_{m\times n} = P_mB_{m\times n}Q_n,

由此还可得到:若P、Q为满秩阵,则:

  • 练习

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值