目录
1. 矩阵是什么?
矩阵被认为是线性代数中最基础的内容, 也是研究线性代数其他内容的工具。
由m*n个数按一定的次序排成的m行n列的矩形数表称为m*n 的矩阵,简称矩阵:
横的各排称为矩阵的行,竖的各排称为矩阵的列.称为矩阵的第i行j列的元素.元素为实数的矩阵我们称为实矩阵,我们目前只讨论实矩阵。
矩阵通常用大写字母A、B、C等表示,如:
简记为.
行矩阵:
列矩阵:
矩阵是翻译过来的词,英文是Matrix,这个翻译很 好。既形象又大气。阵这个词很容易让我们想到那种气势庞大的阵列。 让你感觉到那种重要和不可替代。
2. 几种特殊的矩阵
- 方阵
当m=n时,即矩阵的行数与列数相同时, 称矩阵为方阵。
主对角线从左上到右下,元素的下标相同,即i=j. 注意只有方阵才有主对角线。
斜对角线从右上到左下,只有方阵才有斜对角线。
- 零矩阵
- 对角矩阵
对角矩阵首先得有对角线,所以必须是方阵。
其它没写出的元素都是零。
- 单位阵
若对角线上的元素都是1,就得到又一个特殊的矩阵:
这个矩阵称作单位矩阵,记作或。
- 数量矩阵
若对角线上的元素是相同的数k,得到的特殊矩阵为:
这个矩阵称作数量矩阵。
- 三角阵
上三角矩阵:
下三角矩阵:
- 梯形阵
设为非零矩阵,若非零行(即至少有一个非零元素的行)全在零行的上面, A中各非零行中第一个(最后一个)非零元素前(后)面零元素的个数随行数增大而增多(减少),则称为上(下)梯形矩阵。简称为上(下)梯形阵。
3. 矩阵的运算
线性运算:
- 相等
两个矩阵相等是指这两个矩阵有相同 的行数与列数, 且对应元素相等.即: