线性代数 | (1) 矩阵Part One

目录

1. 矩阵是什么?

2. 几种特殊的矩阵

3. 矩阵的运算

4. 方阵的行列式

5. 伴随矩阵

6. 矩阵初等变换

7. 矩阵的秩

8. 初等矩阵


1. 矩阵是什么?

矩阵被认为是线性代数中最基础的内容, 也是研究线性代数其他内容的工具。

由m*n个数按一定的次序排成的m行n列的矩形数表称为m*n 的矩阵,简称矩阵:

横的各排称为矩阵的行,竖的各排称为矩阵的列.a_{ij}称为矩阵的第i行j列的元素.元素为实数的矩阵我们称为实矩阵,我们目前只讨论实矩阵。

矩阵通常用大写字母A、B、C等表示,如:

简记为A = (a_{ij})_{m*n}.

行矩阵:

列矩阵:

矩阵是翻译过来的词,英文是Matrix,这个翻译很 好。既形象又大气。阵这个词很容易让我们想到那种气势庞大的阵列。 让你感觉到那种重要和不可替代。

 

2. 几种特殊的矩阵

  • 方阵

当m=n时,即矩阵的行数与列数相同时, 称矩阵为方阵。

主对角线从左上到右下,元素的下标相同,即i=j. 注意只有方阵才有主对角线。

斜对角线从右上到左下,只有方阵才有斜对角线。

  • 零矩阵

  • 对角矩阵

对角矩阵首先得有对角线,所以必须是方阵。

其它没写出的元素都是零。

  • 单位阵

若对角线上的元素都是1,就得到又一个特殊的矩阵:

这个矩阵称作单位矩阵,记作E_{n}I_{n}

  • 数量矩阵

若对角线上的元素是相同的数k,得到的特殊矩阵为:

这个矩阵称作数量矩阵。

  • 三角阵

上三角矩阵:

下三角矩阵:

  • 梯形阵

A=(a_{ij})_{m*n}为非零矩阵,若非零行(即至少有一个非零元素的行)全在零行的上面, A中各非零行中第一个(最后一个)非零元素前(后)面零元素的个数随行数增大而增多(减少),则称为上(下)梯形矩阵。简称为上(下)梯形阵。

 

3. 矩阵的运算

线性运算:

  • 相等

两个矩阵相等是指这两个矩阵有相同 的行数与列数, 且对应元素相等.即:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值