bert源码中input_mask参数的解释

本文通过解读bert的tensorflow源码来解析input_mask参数的应用方法,文中展示的代码均为bert源码中涉及到input_mask的模块。

def create_attention_mask_from_input_mask(from_tensor, to_mask):
  """Create 3D attention mask from a 2D tensor mask.

  Args:
    from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
    to_mask: int32 Tensor of shape [batch_size, to_seq_length].

  Returns:
    float Tensor of shape [batch_size, from_seq_length, to_seq_length].
  """
  from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
  batch_size = from_shape[0]
  from_seq_length = from_shape[1]

  to_shape = get_shape_list(to_mask, expected_rank=2)
  to_seq_length = to_shape[1]

  to_mask = tf.cast(
      tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)

  # We don't assume that `from_tensor` is a mask (although it could be). We
  # don't actually care if we attend *from* padding tokens (only *to* padding)
  # tokens so we create a tensor of all ones.
  #
  # `broadcast_ones` = [batch_size, from_seq_length, 1]
  broadcast_ones = tf.ones(
      shape=[batch_size, from_seq_length, 1], dtype=tf.float32)

  # Here we broadcast along two dimensions to create the mask.
  mask = broadcast_ones * to_mask

  return mask 

to_mask(intput_mask)形状为[batch, seq_length],其中attended部分为1, no attended部分为0,经过下列函数转换得到[batch, seq_length, seq_length],实际上在维度为1的位置上复制了seq_length份

# `query_layer` = [B*F, N*H]
  query_layer = tf.layers.dense(
      from_tensor_2d,
      num_attention_heads * size_per_head,
      activation=query_act,
      name="query",
      kernel_initializer=create_initializer(initializer_range))

  # `key_layer` = [B*T, N*H]
  key_layer = tf.layers.dense(
      to_tensor_2d,
      num_attention_heads * size_per_head,
      activation=key_act,
      name="key",
      kernel_initializer=create_initializer(initializer_range))

  # `value_layer` = [B*T, N*H]
  value_layer = tf.layers.dense(
      to_tensor_2d,
      num_attention_heads * size_per_head,
      activation=value_act,
      name="value",
      kernel_initializer=create_initializer(initializer_range))

  # `query_layer` = [B, N, F, H]
  query_layer = transpose_for_scores(query_layer, batch_size,
                                     num_attention_heads, from_seq_length,
                                     size_per_head)

  # `key_layer` = [B, N, T, H]
  key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
                                   to_seq_length, size_per_head)

  # Take the dot product between "query" and "key" to get the raw
  # attention scores.
  # `attention_scores` = [B, N, F, T]
  attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
  attention_scores = tf.multiply(attention_scores,
                                 1.0 / math.sqrt(float(size_per_head)))

然后得到的attention_mask用于为后续attention计算做掩码,上述为tensorflow attention部分的源码,query_layer的形状为[batch, num_head, seq_length, T],其中num_head*T=bert_embedding_size,得到的attention_scores形状为[batch, num_head, seq_length, seq_length],第三维表示的含义为当前行的字符在子attention头中与其他字符的相关系数程度分数。

 

if attention_mask is not None:
    # `attention_mask` = [B, 1, F, T]
    attention_mask = tf.expand_dims(attention_mask, axis=[1])

    # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
    # masked positions, this operation will create a tensor which is 0.0 for
    # positions we want to attend and -10000.0 for masked positions.
    adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0

    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    attention_scores += adder

  # Normalize the attention scores to probabilities.
  # `attention_probs` = [B, N, F, T]
  attention_probs = tf.nn.softmax(attention_scores)

  # This is actually dropping out entire tokens to attend to, which might
  # seem a bit unusual, but is taken from the original Transformer paper.
  attention_probs = dropout(attention_probs, attention_probs_dropout_prob)

  # `value_layer` = [B, T, N, H]
  value_layer = tf.reshape(
      value_layer,
      [batch_size, to_seq_length, num_attention_heads, size_per_head])

  # `value_layer` = [B, N, T, H]
  value_layer = tf.transpose(value_layer, [0, 2, 1, 3])

  # `context_layer` = [B, N, F, H]
  context_layer = tf.matmul(attention_probs, value_layer)

adder变量即为掩码处理变量,将no attened变量的0转换成-10000,加到attention_scores中,去除填充部分字符的影响,对于每个子attention头都用相同的adder扩展做处理,因为attention_scores后面维度表示的含义即为每个批次文本的长度,与attention_mask扩展后的含义想对应,最终做softmax,可以消除填充字符对attention的影响。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras import layers import bert import numpy as np from transformers import BertTokenizer, BertModel # 设置BERT模型的路径和参数 bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\bert1.ckpt" max_seq_length = 128 train_batch_size = 32 learning_rate = 2e-5 num_train_epochs = 3 # 加载BERT模型 def create_model(): input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="segment_ids") bert_layer = hub.KerasLayer(bert_path, trainable=True) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) output = layers.Dense(1, activation='sigmoid')(pooled_output) model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=output) return model # 准备数据 def create_input_data(sentences, labels): tokenizer = bert.tokenization.FullTokenizer(vocab_file=bert_path + "trainer/vocab.small", do_lower_case=True) # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') input_ids = [] input_masks = [] segment_ids = [] for sentence in sentences: tokens = tokenizer.tokenize(sentence) tokens = ["[CLS]"] + tokens + ["[SEP]"] input_id = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_id) segment_id = [0] * len(input_id) padding_length = max_seq_length - len(input_id) input_id += [0] * padding_length input_mask += [0] * padding_length segment_id += [0] * padding_length input_ids.append(input_id) input_masks.append(input_mask) segment_ids.append(segment_id) return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels) # 加载训练数据 train_sentences = ["Example sentence 1", "Example sentence 2", ...] train_labels = [0, 1, ...] train_input_ids, train_input_masks, train_segment_ids, train_labels = create_input_data(train_sentences, train_labels) # 构建模型 model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(lr=learning_rate), loss='binary_crossentropy', metrics=['accuracy']) # 开始微调 model.fit([train_input_ids, train_input_masks, train_segment_ids], train_labels, batch_size=train_batch_size, epochs=num_train_epochs)这段代码有什么问题吗?
05-24
这段代码存在一些问题: 1. `bert_path` 的值不应该是 ".ckpt" 结尾的文件路径,而是BERT模型的目录路径,例如:`bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\"`。 2. `vocab_file` 参数应该是BERT模型目录下的 "vocab.txt" 文件路径,而不是训练器目录下的 "vocab.small" 文件路径。例如:`tokenizer = bert.tokenization.FullTokenizer(vocab_file=bert_path + "vocab.txt", do_lower_case=True)`。 3. `create_input_data` 函数的 `tokenizer` 对象应该是从 `BertTokenizer` 类导入的。因此,需要将 `from transformers import BertTokenizer` 加入代码开头,并使用 `BertTokenizer.from_pretrained()` 函数来加载BERT的tokenizer。 4. `train_sentences` 和 `train_labels` 应该是训练数据集,但是在代码缺失了这些数据的定义和加载。 5. `create_input_data` 函数返回的 `labels` 应该是一维的,而不是二维的。因此,需要修改函数 `return` 语句为:`return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels).reshape(-1)`。 6. 在 `model.fit` ,需要指定验证集的参数 `validation_data`,以便在训练过程评估模型的性能。 综上所述,以下是修改后的代码示例: ``` import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras import layers import bert import numpy as np from transformers import BertTokenizer, BertModel # 设置BERT模型的路径和参数 bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\" max_seq_length = 128 train_batch_size = 32 learning_rate = 2e-5 num_train_epochs = 3 # 加载BERT模型 def create_model(): input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="segment_ids") bert_layer = hub.KerasLayer(bert_path, trainable=True) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) output = layers.Dense(1, activation='sigmoid')(pooled_output) model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=output) return model # 准备数据 def create_input_data(sentences, labels): tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') input_ids = [] input_masks = [] segment_ids = [] for sentence in sentences: tokens = tokenizer.tokenize(sentence) tokens = ["[CLS]"] + tokens + ["[SEP]"] input_id = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_id) segment_id = [0] * len(input_id) padding_length = max_seq_length - len(input_id) input_id += [0] * padding_length input_mask += [0] * padding_length segment_id += [0] * padding_length input_ids.append(input_id) input_masks.append(input_mask) segment_ids.append(segment_id) return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels).reshape(-1) # 加载训练数据 train_sentences = ["Example sentence 1", "Example sentence 2", ...] train_labels = [0, 1, ...] train_input_ids, train_input_masks, train_segment_ids, train_labels = create_input_data(train_sentences, train_labels) # 构建模型 model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(lr=learning_rate), loss='binary_crossentropy', metrics=['accuracy']) # 开始微调 model.fit([train_input_ids, train_input_masks, train_segment_ids], train_labels, batch_size=train_batch_size, epochs=num_train_epochs, validation_data=([val_input_ids, val_input_masks, val_segment_ids], val_labels)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值