leetcode 516. 最长回文子序列(区间DP问题)

题目描述
给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1:
输入:“bbbab”
输出:4
一个可能的最长回文子序列为 “bbbb”。
示例 2:
输入:“cbbd”
输出:2
一个可能的最长回文子序列为 “bb”。

链接:https://leetcode-cn.com/problems/longest-palindromic-subsequence

区间DP问题
基本模本如下:首先枚举区间长度,之后枚举区间的起始位置。框架如下
其中区间终点计算过程:起点定义为 i ,终点定义为 j 。[i,j] 区间长度为len,因此j-i+1=len,所以 j = i+len-1

for (int len = 1; len <= n; len++) //区间长度
{          
    for (int i = 1; i + len - 1 <= n; i++) //枚举起点i
    { 
        int j = i + len - 1;                 //区间终点j
        //根据题目写代码//
    }
}

定义dp[i][j]的含义表示在区间 [i,j] 内回文子序列的最大长度。最后输出的结果是dp[0][n-1] 表示的是区间0到n-1之间的回文串子序列的最大长度。
对于区间[i,j] 有四种选择方式(以i,j这两个端点是不是在区间内来划分):

  • 选择区间i ,选择区间j f[ i + 1 ][ j-1 ]+2,也就是让区间[i+1,j-1] 内的回文串长度最长。

  • 不选择区间i ,选择区间j f[ i +1 ][ j ]

  • 选择区间i ,不选择区间j f[ i ][ j-1 ]

  • 二者都不选择 f[ i +1 ][ j-1 ]

    • 其中 f[ i +1 ][ j ]和 f[ i ][ j-1 ]都是包含 f[ i +1 ][ j-1 ]的。原因可以看表达式。(建议换条直线理解下标)
class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<vector<int>> dp(n,vector<int>(n));
        for(int len=1;len<=n;len++)
            for(int i=0;i+len-1<n;i++)
            {
                int j=i+len-1;
                if(len==1) dp[i][j]=1;
                else
                {
                    if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1]+2;
                    else dp[i][j]=max(dp[i][j],max(dp[i][j-1],dp[i+1][j]));
                }
            }
        return dp[0][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值