题目描述
给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1:
输入:“bbbab”
输出:4
一个可能的最长回文子序列为 “bbbb”。
示例 2:
输入:“cbbd”
输出:2
一个可能的最长回文子序列为 “bb”。
链接:https://leetcode-cn.com/problems/longest-palindromic-subsequence
区间DP问题
基本模本如下:首先枚举区间长度,之后枚举区间的起始位置。框架如下
其中区间终点计算过程:起点定义为 i ,终点定义为 j 。[i,j] 区间长度为len,因此j-i+1=len,所以 j = i+len-1
for (int len = 1; len <= n; len++) //区间长度
{
for (int i = 1; i + len - 1 <= n; i++) //枚举起点i
{
int j = i + len - 1; //区间终点j
//根据题目写代码//
}
}
定义dp[i][j]的含义表示在区间 [i,j] 内回文子序列的最大长度。最后输出的结果是dp[0][n-1] 表示的是区间0到n-1之间的回文串子序列的最大长度。
对于区间[i,j] 有四种选择方式(以i,j这两个端点是不是在区间内来划分):
-
选择区间i ,选择区间j f[ i + 1 ][ j-1 ]+2,也就是让区间[i+1,j-1] 内的回文串长度最长。
-
不选择区间i ,选择区间j f[ i +1 ][ j ]
-
选择区间i ,不选择区间j f[ i ][ j-1 ]
-
二者都不选择 f[ i +1 ][ j-1 ]
- 其中 f[ i +1 ][ j ]和 f[ i ][ j-1 ]都是包含 f[ i +1 ][ j-1 ]的。原因可以看表达式。(建议换条直线理解下标)
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n,vector<int>(n));
for(int len=1;len<=n;len++)
for(int i=0;i+len-1<n;i++)
{
int j=i+len-1;
if(len==1) dp[i][j]=1;
else
{
if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1]+2;
else dp[i][j]=max(dp[i][j],max(dp[i][j-1],dp[i+1][j]));
}
}
return dp[0][n-1];
}
};