题目传送门
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-palindromic-substring
题干
题解
区间dp
1、先确定dp数组所表示的状态
dp[i][j]:表示区间 [i, j] 是否为回文子串, 0 代表区间不是回文子串,1 代表区间是回文子串
2、确定初始状态
首先将区间长度为1的都设为1,即dp[i][i] = 1,因为一个字符一定是回文子串
3、状态转移
需要二重循环枚举
第一重循环枚举区间长度 len,范围从 2 到 s.size()。第二重枚举区间的左端点 i ,范围从 0 到 s.size()-len+1
因为区间长度和区间左端点确定了,那么区间右端点 j 也确定了,即 j = i+len-1
最后就需要分情况进行状态转移:
当 s[i] == s[j] 时:
①区间长度len == 2:
因为左右端点相同,并且长度等于2,那么一定是回文串,所以令dp[i][j] = 1
②区间长度不为2:
此时区间 [i, j] 是否为回文串需要取决于区间 [i+1, j-1],所以令dp[i][j] = dp[i+1][j-1]
4、找到最长回文子串长度和左端点
如果当前区间为回文区间,即 dp[i][j]=1
就比较区间长度 len 和 max_len 的值,更新 max_len 和 start(最长回文子串左端点)
Code
class Solution {
public:
string longestPalindrome(string s) {
int dp[1001][1001];
memset(dp, 0, sizeof dp);
// max_len 表示最大回文子串长度, start 表示最长回文子串的左端点
int max_len = 1, start = 0;
// 字符串长度
int n = s.size();
for (int i = 0; i < n; i++)
dp[i][i] = 1;
for (int len = 2; len <= n; len++) {
for (int i = 0; i < n - len + 1; i++) {
int j = i + len - 1;
if (s[i] == s[j]) {
if (len == 2)
dp[i][j] = 1;
else
dp[i][j] = dp[i + 1][j - 1];
}
if (dp[i][j] == 1) {
if (max_len < len) {
max_len = len;
start = i;
}
}
}
}
return s.substr(start, max_len);
}
};