leetcode 5. 最长回文子串(区间dp)

题目传送门

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-palindromic-substring

题干

在这里插入图片描述

题解

区间dp

1、先确定dp数组所表示的状态

dp[i][j]:表示区间 [i, j] 是否为回文子串, 0 代表区间不是回文子串,1 代表区间是回文子串

2、确定初始状态

首先将区间长度为1的都设为1,即dp[i][i] = 1,因为一个字符一定是回文子串

3、状态转移

需要二重循环枚举

第一重循环枚举区间长度 len,范围从 2 到 s.size()。第二重枚举区间的左端点 i ,范围从 0 到 s.size()-len+1

因为区间长度和区间左端点确定了,那么区间右端点 j 也确定了,即 j = i+len-1

最后就需要分情况进行状态转移:

当 s[i] == s[j] 时:

①区间长度len == 2:

因为左右端点相同,并且长度等于2,那么一定是回文串,所以令dp[i][j] = 1

②区间长度不为2:

此时区间 [i, j] 是否为回文串需要取决于区间 [i+1, j-1],所以令dp[i][j] = dp[i+1][j-1]

4、找到最长回文子串长度和左端点

如果当前区间为回文区间,即 dp[i][j]=1

就比较区间长度 len 和 max_len 的值,更新 max_len 和 start(最长回文子串左端点)

Code

class Solution {
public:
    string longestPalindrome(string s) {
        int dp[1001][1001]; 
        memset(dp, 0, sizeof dp);
        // max_len 表示最大回文子串长度, start 表示最长回文子串的左端点 
        int max_len = 1, start = 0; 
        // 字符串长度
        int n = s.size(); 
        
        for (int i = 0; i < n; i++)
            dp[i][i] = 1;
        for (int len = 2; len <= n; len++) {
            for (int i = 0; i < n - len + 1; i++) {
                int j = i + len - 1;
                if (s[i] == s[j]) {
                    if (len == 2)
                        dp[i][j] = 1;
                    else
                        dp[i][j] = dp[i + 1][j - 1];
                }
                if (dp[i][j] == 1) {
                    if (max_len < len) {
                        max_len = len;
                        start = i;
                    }
                }
            }
        }
        return s.substr(start, max_len);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值