LeetCode 322 零钱兑换
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
示例 4:
输入:coins = [1], amount = 1
输出:1
示例 5:
输入:coins = [1], amount = 2
输出:2
类似于完全背包问题,由于该物品可以被无限取,可以将零钱的面值大小看作体积,零钱的个数看做是价值,给定的amount视作是总体积。本题目求解的是价值最小,因此状态计算为:f[i] = min(f[i],f[i-x]) 其中x是每个物品的面值。
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> f(amount+1,INT_MAX/2);
f[0]=0;
for(auto c:coins)
{
for(int i=c;i<=amount;i++)
{
f[i]=min(f[i],f[i-c]+1);
}
}
return f[amount]==INT_MAX/2?-1:f[amount] ;
}
};
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> f(amount+1,INT_MAX/2);
f[0]=0;
for(int i=1;i<=amount;i++)
{
for(int x:coins)
{
if(i>=x)
f[i]=min(f[i],f[i-x]+1);
}
}
return f[amount]==INT_MAX/2?-1:f[amount] ;
}
};
二维数组:
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
int n=coins.size();
vector<vector<int>> f(n+1,vector<int>(amount+1,INT_MAX/2));
f[0][0]=0;
for(int i=1;i<=n;i++)
{
int c=coins[i-1];
for(int j=0;j<=amount;j++)//注意j的初始值
{
f[i][j]=f[i-1][j];
if(j>=c) f[i][j]=min(f[i][j-c]+1,f[i][j]);
}
}
return f[n][amount]==INT_MAX/2?-1:f[n][amount];
}
};
LeetCode 518. 零钱兑换 II(DP)
给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带符号整数。
示例 1:
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入:amount = 10, coins = [10]
输出:1
dp[x]表示金额为x的硬币组合数,边界条件是dp[0]=1,即当金额为0时方案数为1。在求解面值为amount的组合数时,coin≤ i ≤amount如果存在一个面值为x,且dp[i-x]也存在,那么可以构造出 i 这个面值。因此状态转移方程为 dp[i] += dp[i-x] 。
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> f(amount+1,0);
f[0]=1;
for(auto x:coins)
{
for(int i=x;i<=amount;i++)
{
f[i]+=f[i-x];
}
}
return f[amount];
}
};