丢旗子问题/LeetCode 887 鸡蛋掉落问题(谷歌面试题)

LeetCode 887 鸡蛋掉落问题:
给你 k 枚相同的鸡蛋,并可以使用一栋从第 1 层到第 n 层共有 n 层楼的建筑。已知存在楼层 f ,满足 0 <= f <= n ,任何从 高于 f 的楼层落下的鸡蛋都会碎,从 f 楼层或比它低的楼层落下的鸡蛋都不会破。
每次操作,你可以取一枚没有碎的鸡蛋并把它从任一楼层 x 扔下(满足 1 <= x <= n)。如果鸡蛋碎了,你就不能再次使用它。如果某枚鸡蛋扔下后没有摔碎,则可以在之后的操作中 重复使用 这枚鸡蛋.请你计算并返回要确定 f 确切的值 的 最小操作次数 是多少?

示例 1:
输入:k = 1, n = 2
输出:2
解释:
鸡蛋从 1 楼掉落。如果它碎了,肯定能得出 f = 0 。
否则,鸡蛋从 2 楼掉落。如果它碎了,肯定能得出 f = 1 。
如果它没碎,那么肯定能得出 f = 2 。
因此,在最坏的情况下我们需要移动 2 次以确定 f 是多少。
示例 2:
输入:k = 2, n = 6
输出:3
示例 3:
输入:k = 3, n = 14
输出:4
提示:
1 <= k <= 100
1 <= n <= 104

鸡蛋可以重复使用,定义f[i][j]表示用 j 枚鸡蛋最多扔 i 次得到的最大高度,也就是说鸡蛋越多,可以试出的高度约高,也就是f[i][k+1] ≥f[i][k],假设在 i 处,如果鸡蛋碎了,那么可以得到的最大高度为f[i-1][j-1] 如果鸡蛋没碎,那么还可以尝试的高度为 f[i-1][j] 注意是还可以尝试的高度,最终鸡蛋可以确定的楼层的高度为 f[i][j]=f[i-1][j]+f[i-1][j-1]+1;为啥加一呢,就是加入在 i 处碎了,那么该处以下都不会碎,可以确认的最高的高度为 f[i-1][j-1] +1 .

int f[10010][110];

class Solution {
public:
    int superEggDrop(int K, int N) {
        for(int i=1;i<=N;i++)
        {
            for(int j=1;j<=K;j++)
            {
                f[i][j]=f[i-1][j]+f[i-1][j-1]+1;
            }
            if(f[i][K]>=N) return i; 
        }
        return -1;
    }
};

丢旗子问题
一座大楼有层,地面算作第0层,最高的一层为第 层。已知棋子从第0层掉落肯定不会摔碎,从第层掉落可能会摔碎,也可能不会摔碎。给定整数作为楼层数,再给定整数作为棋子数,返回如果想找到棋子不会摔碎的最高层数,即使在最差的情况下扔的最小次数。一次只能扔一个棋子。
示例1
输入:10,1
返回值:10
说明:
因为只有1棵棋子,所以不得不从第1层开始一直试到第10层,在最差的情况下,即第10层是不会摔坏的最高层,最少也要扔10次
示例2
输入:3,2
返回值:2

说明:先在2层扔1棵棋子,如果碎了,试第1层,如果没碎,试第3层

丢旗子问题:由于数据范围很乏,如果使用两重循环会超时,因此需要将两重循环优化为一重循环,状态计算为f[i][j]=f[i-1][j]+f[i-1][j-1]+1;去掉第 i 维,可以得到f [j] =f [j] + f [j-1]+1(等价于 f[i][j]=f[i][j]+f[i][j-1]+1); 但是与原始式子是不等价的,由于需要的是上一个状态的值,要保证上一个状态的值被计算出来,因此需要从大到小循环。

class Solution {
public:
    int solve(int N, int K) {
        int log2times = log(N)/log(2)+1;
        if ( K >= log2times ) return log2times;
        int dp[100010] = {0};
        for(int i = 1 ; i <= N ; i ++)
        {
            for(int j = K ; j > 0 ; j --)
            {
                dp[j] = dp[j - 1] + dp[j] + 1;
                if(dp[j] >= N)
                    return i;
            }
        }
        return 0;
    }
};

丢旗子问题:因为牛客网上给定的数据范围(0≤N,K≤106)很大,因此使用上述两层循环会超时,需要使用滚动数组来记录。滚动数组需要保存上一个状态的值即为pre,tem为当前状态的值,当前状态的值为f[i] = f[i] + pre +1 。

class Solution {
public:
    int f[10010];
    int superEggDrop(int K, int N) {
        int log2times = log(N)/log(2)+1;
        if ( K >= log2times ) return log2times;
        int ret = 0;
        int tmp, pre;
        while ( true ) {
            ++ret;
            pre = 0;
            for ( int i = 0; i < K; ++i ) {
                tmp = f[i];
                f[i] += pre + 1;
                if ( f[i] >= N ) return ret;
                pre = tmp;
            }
        }
        return -1;
    }
};
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值