Stanford Parser使用

NLP 专栏收录该内容
12 篇文章 0 订阅

用Stanford Parser解析句子,生成句法树。

1.下载

从官网下载stanford-parser-full-2016-10-31.zip文件,网址是http://nlp.stanford.edu/software/stanford-parser-full-2016-10-31.zip ,如果要对中文的句子进行句法解析,还需要下载文件stanford-chinese-corenlp-2016-10-31-models.jar ,网址是http://nlp.stanford.edu/software/stanford-chinese-corenlp-2016-10-31-models.jar 。其他信息见官网http://nlp.stanford.edu/software/lex-parser.shtml,包括常见问题(FAQ)等。另外,我的另一篇博客对常见问题进行了部分翻译,网址是http://blog.csdn.net/yangyangrenren/article/details/56935145

2.使用

注意:需要java8环境。
首先将stanford-parser-full-2016-10-31.zip解压。

2.1 直接在命令行中使用

进入解压后的根目录中,查看README.txt,可以直接运行./lexparser.sh data/testsent.txt 即可。
这里写图片描述

2.2 运行GUI

图形用户界面形式,进入到解压后的主目录中,然后输入sh ./lexparser-gui.sh 即可
这里写图片描述
对于Windows系统环境,首先需要安装好java环境。然后双击lexparser-gui.bat图标即可运行,这里不详细叙述。

2.3 eclipse中运行

上图,直接按照图示中添加jar路径,并且创建data文件夹,运行时候传入参数:edu/stanford/nlp/models/lexparser/chineseFactored.ser.gz data/chinese-onesent-utf8.txt
这里写图片描述
这张图片的例子是运行中文的。如果要运行英文,可以直接运行,而不用向run as —- run configurations —- Arguments传递参数。

3.其他使用方式

参考另外一个网址:http://blog.csdn.net/u010454729/article/details/46845403 ,他在第三部分,介绍了nltk结合stanford-parser.jar解析句子。

4.标注指代的含义

说明:本部分转载于学步园http://www.xuebuyuan.com/1789420.html
ROOT:要处理文本的语句
IP:简单从句
NP:名词短语
VP:动词短语
PU:断句符,通常是句号、问号、感叹号等标点符号
LCP:方位词短语
PP:介词短语
CP:由‘的’构成的表示修饰性关系的短语
DNP:由‘的’构成的表示所属关系的短语
ADVP:副词短语
ADJP:形容词短语
DP:限定词短语
QP:量词短语
NN:常用名词
NR:固有名词
NT:时间名词
PN:代词
VV:动词
VC:是
CC:表示连词
VE:有
VA:表语形容词
AS:内容标记(如:了)
VRD:动补复合词
CD: 表示基数词
DT: determiner 表示限定词
EX: existential there 存在句
FW: foreign word 外来词
IN: preposition or conjunction, subordinating 介词或从属连词
JJ: adjective or numeral, ordinal 形容词或序数词
JJR: adjective, comparative 形容词比较级
JJS: adjective, superlative 形容词最高级
LS: list item marker 列表标识
MD: modal auxiliary 情态助动词
PDT: pre-determiner 前位限定词
POS: genitive marker 所有格标记
PRP: pronoun, personal 人称代词
RB: adverb 副词
RBR: adverb, comparative 副词比较级
RBS: adverb, superlative 副词最高级
RP: particle 小品词
SYM: symbol 符号
TO:”to” as preposition or infinitive marker 作为介词或不定式标记
WDT: WH-determiner WH限定词
WP: WH-pronoun WH代词
WP$: WH-pronoun, possessive WH所有格代词
WRB:Wh-adverb WH副词

关系表示
abbrev: abbreviation modifier,缩写
acomp: adjectival complement,形容词的补充;
advcl : adverbial clause modifier,状语从句修饰词
advmod: adverbial modifier状语
agent: agent,代理,一般有by的时候会出现这个
amod: adjectival modifier形容词
appos: appositional modifier,同位词
attr: attributive,属性
aux: auxiliary,非主要动词和助词,如BE,HAVE SHOULD/COULD等到
auxpass: passive auxiliary 被动词
cc: coordination,并列关系,一般取第一个词
ccomp: clausal complement从句补充
complm: complementizer,引导从句的词好重聚中的主要动词
conj : conjunct,连接两个并列的词。
cop: copula。系动词(如be,seem,appear等),(命题主词与谓词间的)连系
csubj : clausal subject,从主关系
csubjpass: clausal passive subject 主从被动关系
dep: dependent依赖关系
det: determiner决定词,如冠词等
dobj : direct object直接宾语
expl: expletive,主要是抓取there
infmod: infinitival modifier,动词不定式
iobj : indirect object,非直接宾语,也就是所以的间接宾语;
mark: marker,主要出现在有“that” or “whether”“because”, “when”,
mwe: multi-word expression,多个词的表示
neg: negation modifier否定词
nn: noun compound modifier名词组合形式
npadvmod: noun phrase as adverbial modifier名词作状语
nsubj : nominal subject,名词主语
nsubjpass: passive nominal subject,被动的名词主语
num: numeric modifier,数值修饰
number: element of compound number,组合数字
parataxis: parataxis: parataxis,并列关系
partmod: participial modifier动词形式的修饰
pcomp: prepositional complement,介词补充
pobj : object of a preposition,介词的宾语
poss: possession modifier,所有形式,所有格,所属
possessive: possessive modifier,这个表示所有者和那个’S的关系
preconj : preconjunct,常常是出现在 “either”, “both”, “neither”的情况下
predet: predeterminer,前缀决定,常常是表示所有
prep: prepositional modifier
prepc: prepositional clausal modifier
prt: phrasal verb particle,动词短语
punct: punctuation,这个很少见,但是保留下来了,结果当中不会出现这个
purpcl : purpose clause modifier,目的从句
quantmod: quantifier phrase modifier,数量短语
rcmod: relative clause modifier相关关系
ref : referent,指示物,指代
rel : relative
root: root,最重要的词,从它开始,根节点
tmod: temporal modifier
xcomp: open clausal complement
xsubj : controlling subject 掌控者

  • 0
    点赞
  • 1
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

About A natural language parser is a program that works out the grammatical structure of sentences, for instance, which groups of words go together (as "phrases") and which words are the subject or object of a verb. Probabilistic parsers use knowledge of language gained from hand-parsed sentences to try to produce the most likely analysis of new sentences. These statistical parsers still make some mistakes, but commonly work rather well. Their development was one of the biggest breakthroughs in natural language processing in the 1990s. You can try out our parser online. This package is a Java implementation of probabilistic natural language parsers, both highly optimized PCFG and lexicalized dependency parsers, and a lexicalized PCFG parser. The original version of this parser was mainly written by Dan Klein, with support code and linguistic grammar development by Christopher Manning. Extensive additional work (internationalization and language-specific modeling, flexible input/output, grammar compaction, lattice parsing, k-best parsing, typed dependencies output, user support, etc.) has been done by Roger Levy, Christopher Manning, Teg Grenager, Galen Andrew, Marie-Catherine de Marneffe, Bill MacCartney, Anna Rafferty, Spence Green, Huihsin Tseng, Pi-Chuan Chang, Wolfgang Maier, and Jenny Finkel. The lexicalized probabilistic parser implements a factored product model, with separate PCFG phrase structure and lexical dependency experts, whose preferences are combined by efficient exact inference, using an A* algorithm. Or the software can be used simply as an accurate unlexicalized stochastic context-free grammar parser. Either of these yields a good performance statistical parsing system. A GUI is provided for viewing the phrase structure tree output of the parser. As well as providing an English parser, the parser can be and has been adapted to work with other languages. A Chinese parser based on the Chinese Treebank, a German parser based on the Negra corpus and Arabic parsers based on the Penn Arabic Treebank are also included. The parser has also been used for other languages, such as Italian, Bulgarian, and Portuguese. The parser provides Stanford Dependencies output as well as phrase structure trees. Typed dependencies are otherwise known grammatical relations. This style of output is available only for English and Chinese. For more details, please refer to the Stanford Dependencies webpage. The current version of the parser requires Java 6 (JDK1.6) or later. (You can also download an old version of the parser, version 1.4, which runs under JDK 1.4, or version 2.0 which runs under JDK 1.5, but those distributions are no longer supported.) The parser also requires a reasonable amount of memory (at least 100MB to run as a PCFG parser on sentences up to 40 words in length; typically around 500MB of memory to be able to parse similarly long typical-of-newswire sentences using the factored model). The parser is available for download, licensed under the GNU General Public License (v2 or later). Source is included. The package includes components for command-line invocation, a Java parsing GUI, and a Java API. The parser code is dual licensed (in a similar manner to MySQL, etc.). Open source licensing is under the full GPL, which allows many free uses. For distributors of proprietary software, commercial licensing with a ready-to-sign agreement is available. If you don't need a commercial license, but would like to support maintenance of these tools, we welcome gift funding. The download is a 54 MB zipped file (mainly consisting of included grammar data files). If you unpack the zip file, you should have everything needed. Simple scripts are included to invoke the parser on a Unix or Windows system. For another system, you merely need to similarly configure the classpath.
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值