Posterior Cramér–Rao Bounds for Discrete-Time Nonlinear Filtering 阅读

Intro

在诸如迭代控制、分析以及对于非静止时间序列的预测这些问题中,无法使用最优的估计器,需要使用次优的估计器。
时不变模型中,一般使用CRB,用Fisher信息矩阵的逆给出,但是在时变的系统中,参数向量变成了随机向量,由此开发出了posterior CRB,也称Van Trees 版的CRB。
文中提出了一个适用于离散时间的多维非线性滤波的CRB。

PCRB的性质

x x x是measurement, θ \theta θ是r维的state,g(x)是将x映射为 θ \theta θ的函数。PCRB就可以表示成下面的样子: P = E { [ g ( x ) − θ ] [ g ( x ) − θ ] T } ≥ J − 1 P=E\{[g(x)-\theta][g(x)-\theta]^T\} \geq J^{-1} P=E{[g(x)θ][g(x)θ]T}J1, J就是r × r 的fisher 信息矩阵,其中的每一个元素的定义为 J i , j = E [ − ∂ 2 l o g   p x , θ ( X , Θ ) ∂ Θ i ∂ Θ j ] , i , j = 1 , . . . , r J_{i,j}=E[- \frac{\partial^2 log~p_{x,\theta}(X,\Theta)}{\partial \Theta_{i}\partial \Theta_{j}}], i,j=1 ,..., r Ji,j=E[ΘiΘj2log px,θ(X,Θ)],i,j=1,...,r,在引入了新的记号方式 ∇ Θ = [ ∂ ∂ Θ 1 , . . . , ∂ ∂ Θ r ] T \nabla_{\Theta}= [\frac{\partial}{\partial\Theta_1}, ... , \frac{\partial}{\partial\Theta_r}]^T Θ=[Θ1,...,Θr]T Δ Ψ Θ = ∇ Ψ ∇ Θ T \Delta_\Psi^\Theta= \nabla_\Psi \nabla_\Theta^T ΔΨΘ=ΨΘT之后,可以得到简化版的表示形式 J = E [ − Δ Θ Θ l o g   p x , θ ( X , Θ ) ] J=E[-\Delta_\Theta^\Theta log ~p_{x,\theta}(X,\Theta)] J=E[ΔΘΘlog px,θ(X,Θ)],又因为 p x , θ ( X , Θ ) = p x ∣ θ ( X ∣ Θ ) ⋅ p θ ( Θ ) p_{x,\theta}(X,\Theta)=p_{x|\theta}(X|\Theta)\cdot p_\theta(\Theta) px,θ(X,Θ)=pxθ(XΘ)pθ(Θ),由于用了log,所以J就可以拆成两个部分之和 J = J D + J P J=J_D+J_P J=JD+JP J D J_D JD相当于生成概率, J P J_P JP相当于先验,有 J D = E [ − Δ Θ Θ l o g   p x ∣ θ ( X ∣ Θ ) ] J_D=E[-\Delta_\Theta^\Theta log ~p_{x|\theta}(X|\Theta)] JD=E[ΔΘΘlog pxθ(XΘ)] J P = E [ − Δ Θ Θ l o g   p θ ( Θ ) ] J_P=E[-\Delta_\Theta^\Theta log ~p_{\theta}(\Theta)] JP=E[ΔΘΘlog pθ(Θ)],如果二者互换一下也可以写,只不过写完之后 p x ( X ) p_x(X) px(X)这项在对于 Θ \Theta Θ求偏导的过程中会变成0,就是下面这样 J = E [ − Δ Θ Θ l o g   p θ ∣ x ( Θ ∣ X ) ] J=E[-\Delta_\Theta^\Theta log ~p_{\theta|x}(\Theta|X)] J=E[ΔΘΘlog pθx(ΘX)],如果 θ \theta θ被拆成了两部分, θ = [ θ α T , θ β T ] T \theta=[\theta_\alpha^T, \theta_\beta^T]^T θ=[θαT,θβT]T,J就可以跟着分块
在这里插入图片描述
在这里插入图片描述
关于 θ β \theta_\beta θβ的信息子矩阵就是(15)式的右边(不带逆符号)
接下来具体化问题,假设面对的问题是一个非线性的滤波问题:
在这里插入图片描述
在这里插入图片描述
依照贝叶斯法则以及马尔可夫性以及状态的完备性设定,有
在这里插入图片描述
注意这里的n不是向量维度,而是时间
当我们获得了 X n X_n Xn的fisher信息矩阵后(也就是 J ( X n ) J(X_n) J(Xn)),要求n时刻的 x n x_n xn的fisher信息矩阵( J ( x n ) J(x_n) J(xn)),就可以用上面提到的分解方法来分解,也就是 X n = [ X n − 1 T , x n T ] T X_n=[X_{n-1}^T, x_n^T]^T Xn=[Xn1T,xnT]T,就会得到:
在这里插入图片描述
在这里插入图片描述
这样可以只对n-1阶矩阵求逆
在这里插入图片描述
下面的证明略去
接下来有几个常见情况下的落实
A 高斯噪声模型
在这里插入图片描述
假设w和v的协方差矩阵分别是Q和R,有
在这里插入图片描述
剩下的和我的研究方向关系不大,就不写了

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值