论文阅读:弱光图像的增强
读一些有关弱光图像增强的论文,包括传统方法和深度学习方法
Y.Z.A
这个作者很懒,什么都没留下…
展开
-
Deep Bilateral Learning for Real-Time Image (hdrnet) SIGGRAPH 2017 论文阅读
之前在"Underexposed photo Enhancement Using Deep Illumination Estimation "那篇阅读文章里面挖的坑终于回来填了这个工作是一群谷歌的研究员搞的Abstract使用成对的输入输出图片,训练了一个卷积神经网络来预测一个在bilateral space中的模型的参数, 运算过程中使用低分辨率图像以降低计算代价, 首先拿到低分辨率情况下生成的仿射变换, 然后将这个仿射变换进行升采样使之能应用在正常分辨率图像上,最后利用升采样过的仿射变换来优化原本原创 2020-07-13 00:44:40 · 1976 阅读 · 0 评论 -
LLNet:A deep autoencoder approach to natural low-light image enhancement_Pattern Recognition 2016
这篇文章貌似是深度学习用于图像增强的第一批文章之一,应该说很具有开创性,所以拿来读一读看看Abstract& Introduction在当前的工作中,我们使用深度自动编码器(我们称为低光网络或LLNet)从表示学习的角度解决对比度增强的问题,该编码器经过训练可以学习低光图像中的基本信号特征并自适应地变亮和降噪贡献:本文提出了一种利用一类深度神经网络-叠置稀疏去噪自动编码器(SSDA)...原创 2020-06-11 17:35:44 · 3128 阅读 · 0 评论 -
Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model TIP 2018阅读记录
Abstract& Introduction到目前为止,经典的Retinex模型都是不够健壮的,对于噪声的加入抵抗力很差,我们提出了健壮的Retinex模型,进行对噪声图的估计,加入了对照明情况和反射率的新的正则项...原创 2020-06-11 17:36:35 · 2626 阅读 · 3 评论 -
Learning to see in the dark CVPR 2018论文阅读记录
这篇文章的贡献主要有两个,一个是给出了新的低光数据集,不过是raw格式的;另一个是给出了一个在极低光照,极低SNR情况下能够有很好结果的网络Abstract& instruction在光照毁灭性弱的情况下,传统的相机处理pipeline是不再适用的,必须要从raw格式文件来重建于是我们通过学习的方式建立起了一个网络,这个网络可以对弱光图像给出新的pipeline,效果还不错,而之前的...原创 2020-04-25 23:36:09 · 358 阅读 · 0 评论 -
LIME: Low-light image enhancement via illumination map estimation TIP 2017阅读记录
Abstract&Introduction原创 2020-06-11 17:36:22 · 2164 阅读 · 0 评论 -
Underexposed Photo Enhancement using Deep Illumination Estimation CVPR 2019 阅读记录
貌似是挺有争议的一篇文章,挺多人说这篇文章抄袭hdrnet,结果还中了CVPR的oral,不值这个价。暂时还没看hdrnet,所以我也不好评说,不过hdrnet的主页是这个这个,有空大概会去看一看。Abstract、Introduction、Background算法是用来增强曝光不足的图像的,之前的人们都是直接学习一个从图像到图像的映射,这里是引入了一个中间光照在输入和输出之间,增强了网络的能...原创 2020-03-31 07:52:15 · 723 阅读 · 0 评论