量测
文章平均质量分 57
yangyoung4ever
这个作者很懒,什么都没留下…
展开
-
计算三维空间点到线段的最短距离
线段不同于直线是无限延申的,所以点到线段的距离需要考虑线段的两端(适用于平行线段最短距离计算,即取两端点到另一线段的距离进行比较即可)如图有以下三种情况,绿色箭头所表示的线段即为最短距离所处的线段以上情况均有向量AD=(|AP|*|AB|*cos<AP,AB>/ |AB|)*(AB/|AB|)即向量AD=r*AB设定dot为向量点积函数,mold为求向量模函数,cross为向量叉乘设r=dot(AP,AB)/|AB|^2由上图可知 当r<0时 最短距离为AP.原创 2022-05-17 14:47:29 · 2445 阅读 · 0 评论 -
三维空间异面直线最短距离计算
先考虑直线间的关系,与二维直线不同的是还需要考虑异面关系,共面则又分为相交(包括垂直)、平行(共线)等关系,主要困难的在于异面直线的距离计算。若是直接使用坐标值计算不仅复杂还容易出错,这里我们考虑空间向量来实现异面直线间的距离计算。一、判断两直线的大类关系即异面还是共面。找出两直线的法向量PUB(PUB等于两直线向量的叉乘),再分别取两直线各一点生成向量L,判断PUB与L之间夹角是否为90°即可(点积中的cos=0)设定叉乘和点积的计算函数如下// 向量叉乘function cross(原创 2022-05-17 13:47:46 · 3004 阅读 · 0 评论