三维空间异面直线最短距离计算

先考虑直线间的关系,与二维直线不同的是还需要考虑异面关系,共面则又分为相交(包括垂直)、平行(共线)等关系,主要困难的在于异面直线的距离计算。若是直接使用坐标值计算不仅复杂还容易出错,这里我们考虑空间向量来实现异面直线间的距离计算。

一、判断两直线的大类关系即异面还是共面。

找出两直线的法向量PUB(PUB等于两直线向量的叉乘),再分别取两直线各一点生成向量L,判断PUB与L之间夹角是否为90°即可(点积中的cos=0)

设定叉乘和点积的计算函数如下

// 向量叉乘
function cross(a, b) {
  return [
    a[1] * b[2] - b[1] * a[2],
    a[2] * b[0] - b[2] * a[0],
    a[0] * b[1] - b[0] * a[1],
  ];
}
// 向量点乘
function dot(a, b) {
  let res = 0;
  for (let i = 0; i < a.length; i++) {
    res += a[i] * b[i];
  }
  return res;
}
// 向量模
function mold(a) {
  let res = 0;
  for (const k of a) {
    res += k * k;
  }
  return Math.sqrt(res);
}

则设直线L1 L2上各有两点为M、N,则两直线向量L1,L2以及两直线上各取一点生成的向量L为

  const L1 = [L1M[0] - L1N[0], L1M[1] - L1N[1], L1M[2] - L1N[2]];
  const L2 = [L2M[0] - L2N[0], L2M[1] - L2N[1], L2M[2] - L2N[2]];
  const L = [L1M[0] - L2M[0], L1M[1] - L2M[1], L1M[2] - L2M[2]];

以上可得两直线的法向量PUB= cross(L1, L2);

再令d=dot(PUB,L),来判断两直线是否共面,若d=0则共面,反之异面。

二、计算异面直线距离

 以上图为例,可知dot(L,PUB)=mold(L)*mold(PUB)*cos<L,PUB>,即距离

distance=Math.abs(dot(L,PUB))/mold(PUB)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值