先考虑直线间的关系,与二维直线不同的是还需要考虑异面关系,共面则又分为相交(包括垂直)、平行(共线)等关系,主要困难的在于异面直线的距离计算。若是直接使用坐标值计算不仅复杂还容易出错,这里我们考虑空间向量来实现异面直线间的距离计算。
一、判断两直线的大类关系即异面还是共面。
找出两直线的法向量PUB(PUB等于两直线向量的叉乘),再分别取两直线各一点生成向量L,判断PUB与L之间夹角是否为90°即可(点积中的cos=0)
设定叉乘和点积的计算函数如下
// 向量叉乘
function cross(a, b) {
return [
a[1] * b[2] - b[1] * a[2],
a[2] * b[0] - b[2] * a[0],
a[0] * b[1] - b[0] * a[1],
];
}
// 向量点乘
function dot(a, b) {
let res = 0;
for (let i = 0; i < a.length; i++) {
res += a[i] * b[i];
}
return res;
}
// 向量模
function mold(a) {
let res = 0;
for (const k of a) {
res += k * k;
}
return Math.sqrt(res);
}
则设直线L1 L2上各有两点为M、N,则两直线向量L1,L2以及两直线上各取一点生成的向量L为
const L1 = [L1M[0] - L1N[0], L1M[1] - L1N[1], L1M[2] - L1N[2]];
const L2 = [L2M[0] - L2N[0], L2M[1] - L2N[1], L2M[2] - L2N[2]];
const L = [L1M[0] - L2M[0], L1M[1] - L2M[1], L1M[2] - L2M[2]];
以上可得两直线的法向量PUB= cross(L1, L2);
再令d=dot(PUB,L),来判断两直线是否共面,若d=0则共面,反之异面。
二、计算异面直线距离
以上图为例,可知dot(L,PUB)=mold(L)*mold(PUB)*cos<L,PUB>,即距离
distance=Math.abs(dot(L,PUB))/mold(PUB)